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Abstract

High-quality brain images in magnetic resonance imaging (MRI) are essential
for accurate diagnostic tasks such as tumour segmentation, with 3T images
having the potential for higher quality than 1.5T. However, many parts of the
world only have access to 1.5T machines, and sometimes improperly scanned
images contain acquisition artefacts. Deep-learning based super-resolution can
enhance 1.5T images to resemble 3T-like quality, aiming to match the diagnostic
benefits of higher-quality images without access to a 3T machine. However,
most existing work focuses primarily on general MRI image enhancement and
does not specifically target 1.5T to 3T conversion or artefact reduction in
their approaches. This project aims to target these gaps by degrading a set
of 3T images to resemble 1.5T using k-space filtering and simulate GRAPPA
and Partial Fourier acquisition artefacts, then implementing and evaluating
ESRGAN-based super-resolution models with different loss functions. We found
that a composite weighted loss function combining VGG19 perceptual loss, L1
pixel loss, and Sobel edge loss achieved the best performance (SSIM = 0.961,
PSNR = 39.096, LPIPS = 0.032), while replacing edge loss with Fourier loss
yielded comparable results (SSIM = 0.959, PSNR = 38.599, LPIPS = 0.034).
To assess downstream utility, we processed the enhanced images from both
models and non-enhanced low quality images using FSL-FAST (for grey matter,
white matter, and cerebrospinal fluid segmentation) and DeepSeg (for tumour
segmentation). In both cases, the enhanced images exhibited performance more
closely aligned with high-quality images than with low-quality counterparts,
suggesting that the super-resolution provides images that contain clinically
useful information.
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Chapter 1

Introduction

1.1 Motivation

In clinical practice, MRI scanners are typically 1.5 Tesla (1.5T) or 3 Tesla (3T),
with 1.5T operating at half the magnetic field strength of 3T. As of 2023, about
70% of global MRI installations were 1.5T, preferred in healthcare for their lower
cost (typically $1-2 million vs $2-3 million for 3T), and adequate image quality
for most clinical conditions, including neurological, musculoskeletal, cardiac,
and abdominal disorders. 3T machines also face challenges such as heating
issues and image artefacts not seen in 1.5T machines (Jamwal, 2025). Sub-
Saharan Africa is abandoning low-field MRI (≤1T), but as of 2022 only 3% of
scanners were 3T, compared to 57.6% 1.5T and 39.4% low-field (Anazodo et al.,
2022).

Whilst 1.5T images are adequate for most cases, 3T scans can capture images
at double the signal-to-noise ratio (SNR) allowing higher spatial resolution. For
multiple sclerosis (MS), Bachmann et al. (2006) found 3T revealed significantly
more lesions than 1.5T due to better image quality and lesion conspicuity. In
stroke diagnosis, 3T scans show additional ischaemic foci (small spots of brain
injury) and ischaemic lesions (tissue areas damaged in a stroke due to lack of
blood flow) across different brain regions (Kuhl et al., 2005). This means that
3T helps doctors better assess affected brain tissue guiding a more informed
medical response.

Automated tumour segmentation speeds up clinical efficiency by drawing tu-
mour boundaries automatically, allowing radiologists to focus on interpretation,
also removing manual variations between clinicians. Accurate boundaries are
crucial for radiotherapy planning, surgical navigation, and measuring tumour
progression. Whilst it is unclear whether using 1.5T or 3T is better for tumour
segmentation, a clearer scan is likely to yield more accurate delineation (Puzio
et al., 2025).

This report proposes a deep-learning super-resolution model to enhance 1.5T
MRI images to 3T-like quality, having the advantage of only requiring a 1.5T
scanner, which is more affordable and common in medical settings, and adequate
computational power to run. As such, it would provide insights exclusive to 3T
scans, such as MS and ischaemic lesions. The report also evaluates whether the
proposed model can provide more accurate tumour segmentation.
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1.2 Research Gaps

Although MRI super-resolution is of high interest, most prior work focuses on
generic blurring rather than targeting 1.5T-to-3T enhancement specifically, or
simulating acquisition artefacts. This project aims to train a super-resolution
model for 1.5T data by simulating realistic 1.5T acquisition artefacts, with
blurring and noise restrained to 1.5T levels, creating a simulation pipeline in-
spired by real-world 1.5T constraints. This lets us investigate whether tailoring
the task to 1.5T offers clinical benefits over generic blurring super-resolution
approaches, potentially extending its use to the many existing 1.5T scanners.

Unlike prior studies, we use a substantially larger dataset of over 1200 scans
with 155 slices each, providing a wider variety of data, which intends to improve
generalisation across different 1.5T scanner models. To our knowledge, few prior
works systematically outline the effect of different GAN loss functions in MRI
super-resolution context. We therefore investigate how various loss functions
influence characteristics of reconstructed images, offering insights for researchers
targeting specific visual qualities for clinical or research use.

1.3 Aim

Develop a clinically useful MRI super-resolution model that enhances
1.5T images to 3T-like quality, using degraded 3T training data that
accurately reflects real-world 1.5T and 3T differences.
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Chapter 2

Background

2.1 MRI Physics

Magnetic Resonance Imaging (MRI) generates detailed three-dimensional im-
ages of the internal structures of the human body using the axial, sagittal and
coronal planes (Figure 2.1).

Figure 2.1: Brain MRI obtained from (a) Sagittal Plane, (b) Axial plane and
(c) Coronal plane. (Kumar and Dharun, 2016)

2.1.1 Brain Matter Types

Brain matter can typically be categorised into white matter (WM), grey mat-
ter (GM), and cerebrospinal fluid (CSF). GM is found on the outside of the
brain known as the cerebral cortex, WM is encapsulated beneath it, and CSF
surrounds the brain and fills internal spaces, including the ventricles and sub-
arachnoid space (Figure 2.2).
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Figure 2.2: Segmentation of CSF, GM and WM. (a) MRI data; (b) CSF, (c)
GM, and (d) WM. Taken from Chuang et al. (2012).

In MRI, white and grey matter may appear with opposite shades depending on
the scan type, as each have different physical properties exploited by MRI.

2.1.2 Net Magnetisation Vectors

Hydrogen atom is abundant in human body tissue, with each nucleus exhibiting
magnetic spin. Nuclear spin has a direction and precesses around an axis,
pointing in an arbitrary direction unless influenced by an external magnetic
field. Under an external magnetic field, hydrogen spin directions align either
parallel or antiparallel to the main magnetic field direction, with more aligning
parallel. This is shown in Figure 2.3.

Figure 2.3: Hydrogen spin precession direction without (left) and with (right)
an external magnetic field.

We combine spins into a single magnetic moment called the net magnetisation
vector (Figure 2.4), aligning with the magnetic field due as more spins pointing
in that direction. Individual spins precess at the same frequency, but are out of
phase, creating zero net direction perpendicular to the field as their individual
directions cancel each other out (Figure 2.5).
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Figure 2.4: Net magnetisation vector of atoms acted upon by external magnetic
field.

Figure 2.5: Net spin precession direction of single atom (left) compared with
multiple atoms (right).

In MRI, the patient is placed into a magnetic field B0, creating a net mag-
netisation vector. A second magnetic field B1 called the Radiofrequency (RF)
Pulse is then applied, perpendicular to B0 and alternating at the hydrogen spin
frequency. This has two effects on individual spins:

1. Each spin temporarily gets knocked towards the transverse plane, in the
direction of B1 and perpendicular to B0.

2. The spin of each atom precesses in phase with one another.

With spins now in phase with a transverse component, the net magnetisation
vector lies in the transverse plane and precesses about B0. This precessing
transverse magnetisation induces a measurable signal in the receiver coils (Fig-
ure 2.6).
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Figure 2.6: Net magnetisation vector before (left) and after (right) RF pulse.

2.1.3 T1 and T2 Relaxation

Whilst the RF pulse is active, all spins are in phase. When this signal stops,
they slowly de-phase, eliminating the net transverse component (Figure 2.7).
The time taken for de-phasing is called T2-relaxation time. Each tissue has a
different T2 relaxation, which helps differentiate between GM, WM, and CSF.

Figure 2.7: Net transverse magnetisation of different matter types at proceeding
timesteps after RF pulse.

During the RF pulse, the net magnetisation has no longitudinal (B0-parallel)
component. When switched off, spins realign either parallel or antiparallel to
B0 (Figure 2.8). Time taken to restore longitudinal component is called T1

relaxation, also varying by tissue.
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Figure 2.8: Longitudinal magnetisation of different matter types at proceeding
timesteps after RF pulse applied.

2.1.4 T2-FLAIR

T2 FLAIR (Fluid-Attenuated Inversion Recovery) MRI measures T2 relaxation
while strategically suppressing signal from CSF, which has a longer T2 relaxation
time than GM and WM (Figure 2.9).

Figure 2.9: T2 relaxation of different matter (Sodickson and Sodickson, 2016).

Suppression is done by using an inversion recovery pulse to zero cerebrospinal
fluid’s longitudinal magnetisation at measurement, cancelling its image contri-
bution (Hajnal et al., 1992).

This report uses T2-FLAIR (T2F) images rather than T2-weighted (T2W), T1

pre-contrast (T1N), and T1 post-contrast images (T1C) as T2-FLAIR is regarded
as the most useful sequence for lesion detection. T2F is sensitive to pathology
and makes differentiation between CSF and lesions easier whereas T1-based
imaging is more useful to show anatomical structures (Hu et al., 2020). We
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anticipate that our model would be more clinically useful when deployed to
detect lesions rather than visualising anatomical detail, so we optimised the
model on T2F. Although multi-modal MRI super-resolution exists, we focused
on a single modality to use our time efficiently.

T2-FLAIR is chosen for lesion detection because it provides better contrast
between lesions and surrounding tissues. In T2W, white and grey matter often
appear similar while cerebrospinal fluid is much brighter, making nearby lesions
difficult to see (Hashemi et al., 1995). Lesions generally have smaller contrast
in T1N than T2F or T2W (Smith et al., 1985). T1C highlights some lesions
metastases or active MS plaques using contrast agents like Gadolinium (Felix
et al., 1985), but is less sensitive to others, such as edema (Hua et al., 2020)
(Figure 2.10).

Figure 2.10: Four modalities of brain tumor: T2F, T2W, T1N, T1C (from left
to right). The manual segmentation in FLAIR modality is viewed in different
colors: edema (blue), necrosis and nonenhancing tumor (green), enhancing core
(yellow). Image taken from Hu et al. (2020).

2.1.5 MRI Image Acquisition Process

MRI images are inherently 3D stacks of axial (roughly perpendicular to the
spine) 2D slices, comprised of voxels (pixels containing some thickness) whose
intensities reflect T1 or T2-relaxation of tissue. Slices are acquired in the k-
space rather the spatial domain, meaning conversion is needed to display these
as images.

Slice Selection

To obtain k-space slices, MRI splits the net magnetisation vector into slices,
otherwise, it would only capture a single, unusable signal for the entire brain.
Applying a gradient magnetic field along the z-axis (perpendicular to the spine)
makes each point precess at a slightly different frequency. The machine targets
a slice with an RF pulse matching its spins’ precession frequency, so only that
slice’s protons resonate and generate transverse magnetisation.
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Figure 2.11: Slice selection using a gradient magnetic field.

Frequency Encoding Gradient

After a slice is selected, the resulting signal represents the slice’s net magneti-
sation as all nuclei in this slice precess at the same frequency in phase, forming
a sine wave when the amplitude is measured over time. To separate the slice
by location, another gradient is applied, which changes frequencies of nuclei
base on their x-axis location. When the amplitude over time is taken again, it
appears as a complex wave, as different frequencies cancel out (Figure 2.12).

Figure 2.12: Frequency encoding gradient effect on x-axis magnetisation (top)
and resulting amplitude waves (bottom).

Sampling the complex wave at discrete intervals gives numerical values rep-
resenting the entire magnetisation at each instance, applying a Fast Fourier
Transform (FFT) allows us to decompose the signal into its constituent fre-
quencies. Only one unique combination of frequencies and amplitudes (along
the x direction) can produce the original set of sampled values from the complex
wave. As the x-axis has a gradient field, each constituent frequency maps to
an x-axis. As such, so do the amplitudes, meaning that the amount of signal
coming from each x-axis can be determined. The process can be seen below in
Figure 2.13.
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Figure 2.13: Sampled values (top left) and their constituent frequencies (bottom
left) visualised on axial plane (right).

Phase Encoding Gradient

Frequency encoding gives x-axis signal strength but complete images require
both x and y-axis data. As the frequency encoding gradient only functions when
frequency data from entire y-axis columns are the same, changes to frequency
cannot be made to encode y-axis data. Instead, a phase-encoding gradient
briefly applied before frequency encoding creates phase shifts along the y-axis.
Phase shifts are applied evenly, with maximum positive at the top of y and
equal negative at the bottom while the midpoint receives no phase change.

Figure 2.14: Magnetisation phase differences before (left) and after (right) phase
encoding gradient

After frequency encoding, measured waves correspond to a certain phase en-
coding gradient strength. Repeating these measurements with different phase-
encoding strengths, we can stack the Inverse Fast Fourier Transformed (IFFT)
waves, giving the k-space representation of an MRI slice. Although not a spatial
image, it contains spatial information in the x and y direction, allowing for
transformation into a spatial image.
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Figure 2.15: Stacking Fourier-transformed signals (right) from varying phase-
encoding gradients (left).

k-Space

As mentioned earlier, k-space MRI signal produced using both gradient and
phase encoding gradients (Figure 2.16). Each k-space pixel represents an entire
brain slice’s signal measured with marginally different frequency and phase
presets with spatial information encoded by varying phase and frequency gradi-
ents across repeated measurements. Fully sampled k-space is converted into a
spatial image using an IFFT operation, reverting frequency components to their
corresponding image space positions. IFFT is reversible using FFT, allowing
lossless conversion between k-space and the image domain.

Figure 2.16: MRI signal in k-space (left) and corresponding spatial image
representation (right).

Central k-space contains lower frequencies, representing image contrast and
smooth features, whilst outer k-space contains higher frequencies, representing
edges and finer detail.
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Figure 2.17: Demonstration of the effect of removing central portion (middle)
and edges (right) of k-space on spatial image (Moratal et al., 2008).

2.1.6 Parallel Imaging

Parallel imaging is a technique used by most modern MRI systems (Cummings
et al., 2022) to reduce scan time. Traditional MRI contains one receiver coil
to acquire a full grid of k-space, while parallel imaging contains multiple coils
positioned at different locations to simultaneously acquire a smaller (undersam-
pled) k-space portion. Learning relationships between different coil signals can
accurately reconstruct k-space (Cummings et al., 2022).

2.1.7 GRAPPA

The most common parallel imaging techniques today are GRAPPA and SENSE,
which are commercially supported by Siemens, Philips, General Electric, and
Toshiba (Blaimer et al., 2004). Focusing on simulating one of these techniques
for super-resolution would maximise clinical relevance due to their availability.
We focus on GRAPPA for convenience, as it operates entirely within k-space
without requiring coil sensitivity maps like SENSE, although both are clinically
important.

GRAPPA fully samples a central strip of k-space (Auto-Calibration Signal
or ACS) to calculate the linear relationship between coils. Outside the ACS,
every n-th k-space line is sampled, reducing acquisition time by a factor of n
(Griswold et al., 2002). This method can produce artefacts if not calibrated.
The full GRAPPA reconstruction process is explained later in Section 3.1.3.

2.1.8 Partial Fourier

Partial Fourier also reduces acquisition time by undersampling k-space. In
theory, k-space is symmetrical, so only half of k-space needs to be sampled
to reconstruct because of a property called Hermitian symmetry. The sampled
half is used to estimate the remaining k-space, cutting the acquisition time by
half. In practice, phase errors from sources such as patient movement or eddy
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currents cause visual artefacts, so Partial Fourier typically samples around 60-
70% to minimise these (Haldar and Liang, 2022). Partial Fourier is explained
in further detail in Section 3.1.4. Since Partial Fourier is used widely in modern
MRI (Haldar and Liang, 2022) and often combined with GRAPPA (Frost et al.,
2010; Tao et al., 2016; Otazo et al., 2010), it is logical to train a model with
artefacts from both techniques.

2.2 1.5T MRI and 3T MRI Differences

MRI systems are classified by main magnetic field strength B0, with most clinical
scanners operating at either 1.5T or 3T (Global Insight Services, 2025). Visual
differences are caused by the fact that 3T produces double the signal of a 1.5T
scanner.

2.2.1 SNR Doubling

A 3T scanner produces around twice the signal of a 1.5T scanner, giving radi-
ologists the choice of whether to use the extra signal to get higher resolution
images, or to reduce scan time. Theoretically, a 3T scan can double the signal-to-
noise ratio (SNR) compared to 1.5T, as signal strength given by atomic nuclei
increases proportionally more than noise (Edelstein et al., 1986). Doubling
B0 flips some nuclei pointing antiparallel to B0 parallel, strengthening the
longitudinal magnetisation vector M , which is roughly proportional to B0:

M ∝ B0

When the RF pulse tips spins into the transverse plane, transverse magneti-
zation equals longitudinal magnetisation and is therefore also proportional to
B0. Additionally, when B0 is increased, the spin frequency of atomic nuclei ω
increases proportional to B0:

ω ∝ B0

The receiver coil signal S is proportional to the rate of change of magnetisation
S ∝ dM

dt . The magnetisation vector rotates around B0 at frequency ω causing
the transverse component of M to oscillate, with rate of change of magnetisation
proportional to ω and M :

dM

dt
∝ ωM

Therefore, signal detected in receiver coils S is proportional to ω and M :

S ∝ dM

dt
∝ ωM

As both ω and M are proportional to B0, we can write:

S ∝ B2
0 (2.1)

This means increasing from 1.5T to 3T, quadruples idealised signal strength,
but increasing B0 also increases noise, reducing SNR. More precisely, noise v is
proportional to spin ω, which is proportional to B0:

v ∝ ω ∝ B0 (2.2)
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Intrinsic SNR is calculated by dividing the idealised signal shown in Equa-
tion (2.1) by the idealised noise shown in Equation (2.2).

SNR ∝ B0

In practice, 1.5T and 3T k-space differ as noise scales with B0 but the signal
scales with B2

0 . In both strengths, outer regions of k-space contain weak signal
often drowned out by noise, but a boundary exists where signal is equal to noise
and this dynamic quickly changes where signal dominates noise. This boundary
lies closer to the centre at 1.5T than at 3T, effectively shrinking the usable
portion of k-space (Figure 2.18).

Figure 2.18: Demonstration of differing SNR boundaries on 1.5T (left) compared
to 3T (right) k-space.

However, this section describes an idealised SNR B0 relationship. Real-world
SNR differences between 1.5T and 3T are complex and rely on multiple factors.

2.2.2 General Visual Artefacts

Noise

Due to lower intrinsic SNR, 1.5T images are noisier than 3T images. If no extra
fixes are applied, 1.5T images would contain more noise than 3T, obscuring finer
textural details which occupy outer k-space regions but are obscured by noise
due to low signal.

Figure 2.19: Image of knee taken in 1.5T (left) compared to 3T (right) (Wong
et al., 2009).

18



Blur

1.5T scanners reduce noise by increasing acquisition time. Over the course of
multiple scans, signal is added coherently, reinforcing the same k-space voxels,
while noise is added randomly cancelling out the effects over time. However, it
is often unfeasible to quadruple acquisition time in clinical practice.

Another method is to lower spatial resolution, reducing voxel density. This
represents the same brain slice with less voxels, making it more pixelated. This
improves SNR by capturing more signal per voxel, but reduces spatial detail
as each voxel averages signal over a larger area. The final image lacks detail,
especially in edges and textures found in outer regions of k-space, meaning that
outer k-space is either sampled less densely or not sampled when the spatial
resolution is lower.

Figure 2.20: Demonstration of blur on image 1.5T (left) compared to 3T (right)
(Tajima et al., 2023).

Contrast

Contrast between different tissues can differ from 1.5T to 3T, as field strength
affects T1 and T2 relaxation times as a whole and relative to each other. For
example, Bottomley et al. (1984) reports the kidney T1 is 32% longer than the
liver’s at 1.5T, but only 21% longer at 3T (Soher et al., 2007). This means that
the same tissues may show different contrasts at 1.5T vs 3T, but this effect isn’t
always visible or predictable (Soher et al., 2007).

2.2.3 GRAPPA and Partial Fourier

Cartesian undersampling patterns (typically used in GRAPPA) leave distinct
ghosting artefacts in the image, especially when low-frequency areas of k-space
are partially undersampled. This effectively creates faint duplicates of the brain
image direction perpendicular to the undersampling lines (Figure 2.21).

19



Figure 2.21: Artefacts caused by different Cartesian undersampling patterns
(Hyun et al., 2018).

GRAPPA undersamples k-space with a Cartesian pattern (generating artefacts
seen in Figure 2.21) but also reconstructs the missing k-space lines, reducing
ghosting intensity. The remaining artefact level depends on reconstruction
accuracy. This is seen in Figure 2.22, which also shows artefacts from Partial
Fourier truncation without reconstruction, including detail loss and ringing
artefacts around edges.

Figure 2.22: Artefacts caused by Parallel Imaging and Partial Fourier (Corbin
et al., 2025).

Partial Fourier artefacts naturally decrease with reconstruction. POCS Partial
Fourier reconstruction method restores some detail from fully sampled k-space,
but doesn’t fully remove ringing artefacts around edges. Zero-filling k-space
after Partial Fourier has a lower detail-level than POCS, causing slightly less
visible ringing artefacts. These effects can be seen in Figure 2.23.
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Figure 2.23: Artefacts caused by Partial Fourier after reconstruction (Corbin
et al., 2025).

2.3 Existing Approaches to 1.5T/3T Paired Data
Challenges

Enhancing 1.5T images to 3T quality via super-resolution is not a new problem,
and neither is the issue of the limited availability of paired 1.5T and 3T scans,
or inherent issues with using paired scans. As such, several attempts have been
made to address the data shortage. The standard approach degrades existing 3T
scans to resemble 1.5T scans using a set of transformations. Some approaches
also train models on the limited paired 1.5T-3T data.

2.3.1 Simple Kernel-Based Degradation

Shi et al. (2015) simulate blurring seen in lower-field MRI using a Gaussian
filter, and downsamples to simulate the partial volume effect.

Figure 2.24: Simulation of low-resolution image from high-resolution image (Shi
et al., 2015).

Their Gaussian filter is applied by convolving a kernel over the original 3D HR
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volume:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

They set σ = 1, which controls the Gaussian curve spread, meaning around 68%
of the weight is within 1 voxel of the centre. This effectively smooths each voxel
based on its surrounding neighbourhood while preserving local structure.

The second step simply averages every 8 voxels, halving the spatial resolu-
tion. This simulates the partial volume effect where multiple matter types need
to be represented in a single voxel, causing the signal to be a blend of the two,
which misrepresents the true intensity.

We don’t follow this approach as it simplifies the degradation seen in real
MRI. While Gaussian blurring is visually similar to the difference between
1.5T and 3T images, the blurring effect only occurs due to underlying k-space
differences, which are not simulated. Skipping k-space degradation risks either
missing or causing inaccurate visual artefacts.

2.3.2 Simulation and k-Space Degradation for Paired Data
Generation

Ayaz et al. (2024) uses a more complex approach to 3T T1W scans from the
Human Connectome Project, generating “real” and “simulated” sets of training
data.

They generate “real” data by splitting 3D MRI volumes into 2D slices and
converting them to k-space via FFT. They then applied a square Tukey window
to the k-space, tapering values outside the window towards zero, with the
steepest drop-off at the edges. Then Tukey window simulates blurring from
inherent SNR differences (Section 2.2.1), though they do not specifically target
1.5T to 3T MRI differences. Afterwards, k-space is zero-padded, making LR
equal spatial resolution to HR if not already.

Figure 2.25: Tukey window shape, reproduced from Wolfram Research (2024).

For “simulated” data, they process HR scans with Philips Proprietary Auto-
mated Complete Brain Segmentation tool, generating a 3D map labelling each
voxel as either: WM, GM, CSF, cerebellum, corpus callosum, hippocampus,
brainstem, pons, amygdala, fornix, deep gray structures, and ventricles. This
creates “phantoms” with anatomical information but not acquisition artefacts.
Using phantoms, T1 and T2 relaxation times are assigned to each tissue, using
mean and standard deviations from literature. With these relaxation times,
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signal intensities are calculated using Ernst equation for Gradient Echo (GRE)
to create an ideal simulated volume. With the ideal simulated volume, sampling
can be performed to produce new volumes with the resolution set equal to both
the target HR and LR resolutions (0.7mm and 1mm respectively). Afterwards,
complex Gaussian noise is added into the k-space of the phantoms before being
converted back into the spatial domain.

Figure 2.26: Example degradation from Ayaz et al. (2024).

Ayaz et al. (2024) included simulated data since HR pairs often contain artefacts
undesirable for super-resolution. Unwanted artefacts inherent to 3T acquisition
may cause super-resolution models to reproduce them, reducing diagnostic util-
ity. Networks trained solely on simulated data performed slightly inferior to
those trained purely on real data, but networks trained on a combination of
simulated and real data outperformed networks trained purely on real data.

2.3.3 Paired 1.5T and 3T Methods

An approach used by Liao et al. (2022) was to search for 1.5T/3T pairs, which
do exist in the ADNI dataset, containing scans from the same patient taken in
the same visit, though not simultaneously. Since the scans are not simultane-
ous, they are often misaligned due to head movement. To remedy this, each
pair was spatially aligned using SPM12, which estimates the best geometric
transformation mapping to minimise differences between the images. However,
paired data is scarce and Liao et al. (2022) was only able to acquire 157 image
pairs for training and testing. Additionally, SPM12 spatial alignment can still
contain small motion-related misalignments. Different scanners can also produce
discrepancies due to bias fields and even though scans are taken on the same
visit, differences in cerebral blood flow or metabolism can cause a difference in
physiological state.
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2.4 Machine Learning Concepts

To perform super-resolution to convert low resolution 1.5T into 3T MRI scans,
we make use of deep-learning, a subset of machine learning that uses neural
networks with many layers to learn patterns within data. Specifically, we make
use of a generative adversarial network. As such, it is necessary to understand
how neural networks function.

2.4.1 Simple Neural Networks

A neural network maps a set of numerical inputs into a desired output using
some mathematical calculation. For example, a simple image binary classifica-
tion model converts pixel intensity values of an input image and attempts to
convert them into a single probability that the image belongs to a class.

A single “neuron” is a node which takes a set of inputs x1, x2, ..., xn and
multiplies them by corresponding weights w1, w2, ..., wn to compute a weighted
sum. It then adds a bias value b and passes the result through an activation
function f to introduce non-linearity (Rosenblatt, 1958).

y = f

(
n∑
i

= 1wixi + b

)

Figure 2.27: Neuron diagram (Arnx, 2019).

In a neural network, a layer is made up of multiple neurons (Rumelhart et al.,
1986). Each neuron in the layer takes as input the outputs from the previous
layer, and its own output is then passed on to the next layer. A neural network
can be thought of as 3 consecutive layers (input, hidden, and output).

In the input layer, raw data features (such as pixel intensities) are fed
into the network. Afterwards, there can be multiple hidden layers consisting
of multiple neurons that transform these inputs through weighted sums and
activation functions, letting the network capture increasingly abstract patterns
in the data. Finally, the output layer produces the network’s prediction (such
as a probability).
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Figure 2.28: Neural network diagram (Fu et al., 2024).

To train a neural network, the weights wi and biases b are adjusted so that
the network’s output y is as close as possible to the desired target value for
a given input x. This is typically done using a loss function, which quantifies
the difference between the predicted output and the true output assigning it a
numerical score.

2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) differ from simple neural networks as
they modify the hidden layers by adding convolution layers (Lecun et al., 1998).
Whilst in a simple neural network, the inputs must be 1D, CNNs accept 2D
inputs in the form of a 2D matrix. CNNs are commonly used with images,
which are inputted as a 2D matrix containing pixel intensities, retaining spatial
information.

A convolution layer applies a small matrix called a kernel to the input. The
kernel slides over the input matrix, and at each position, performs an element-
wise multiplication with the corresponding local region of the input. The results
are then summed to produce a single output value for that position. When
repeated across the whole input matrix, this creates a 2D output feature map,
which can highlight specific patterns such as edges or shapes. The values inside
the kernels are weights that are continuously adjusted in the training process.
CNNs can be used in super-resolution by replacing a simple output layer with
a single convolution layer, which combines feature maps to predict the pixel
values of the upscaled output.

2.4.3 Generative Adversarial Networks

A Generative Adversarial Networks (GAN) contains two separate CNNs, a
generator and a discriminator (Goodfellow et al., 2014). The generator takes
a low-resolution image as input and produces a high-resolution image while
the discriminator is a classification CNN which evaluates whether an image
is real or generated. During training, the generator uses the discriminator’s
classifications in a loss function, trying to fool it into predicting generated images
as real. Similarly, the discriminator uses the generator’s reconstruction to
update its weights to better distinguish real images from generated ones. With
this adversarial process, the generator produces increasingly realistic images,
and the discriminator becomes more accurate at identifying subtle differences
between real and generated images.
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2.5 Existing Super-Resolution Models

Single image super-resolution (SISR) is the problem of trying to reconstruct a
high-resolution image from a low-resolution image. Generally super-resolution
models are either CNNs, GANs, or Transformers. Super-resolution in the MRI
domain is an active field of research, and there is also some literature looking
at scaling 1.5T scans to 3T scans.

2.5.1 CNN-Based Super-Resolution

One of the earliest CNN-based super-resolution models was SRCNN, which
uses a shallow CNN containing only three convolution layers, this approach
showed promising results for its time (Dong et al., 2015), inspiring other CNN
architectures. FSRCNN extends SRCNN to five convolutional layers, improving
PSNR and reducing training time (Dong et al., 2016). FSRCNN has also
been experimented with low-field to high-field MRI super resolution by Ayaz
et al. (2024), achieving comparable but lower SSIM and PSNR scores compared
to GAN-based methods. U-Net has also been adapted for super-resolution
and includes an encoder-decoder structure and skip connections, allowing it
to preserve fine details, resulting in significantly better PSNR and SSIM scores
than SRCNN and FSRCNN (Lu and Chen, 2019) but has a significantly higher
number of parameters. DeepUResNet further improves upon this by incorpo-
rating residual learning into the U-Net architecture, allowing for deeper models
that still train effectively. When applied to MRI data, DeepUResNet provides
a similar performance to FSRCNN (Ayaz et al., 2024), but is far deeper and
takes much longer to train. We focus on FSRCNN due to its high performance
in MRI super-resolution and compactness.

2.5.2 GAN-Based Super-Resolution

Recently, SISR has increasingly used GANs, with adversarial training providing
an improvement in preserving texture and finer details compared to CNNs. The
first GAN model to be proposed in the context of SISR was SRGAN, which uses
a CNN-based perceptual loss function to penalise differences in deep features,
rather than pixels (Ledig et al., 2017). Later an enhanced SRGAN (ESRGAN)
was proposed by Wang et al. (2018) which uses Residual-in-Residual Dense
Blocks (RRDBs) and removes batch normalisation, which achieves better visual
quality with more realistic and natural textures. SISR with ESRGAN has also
been evaluated on MRI images, outperforming DeepUResNet and FSRCNN in
terms of SSIM and PSNR on real data (Ayaz et al., 2024). GANs focus on
generating visually appealing images, but are prone to generating artefacts and
are notoriously unstable when training (Kozlov et al., 2024).

2.5.3 Transformer-Based Super-Resolution

Recently super-resolution research has begun exploring attention-based tech-
niques. Transformers are characterised by a multi-head self-attention mech-
anism, which has proven effective in processing sequential data. However,
the original Transformer model has quadratic computational complexity with
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respect to the size of the input image, making them computationally expensive
while achieving comparable results to modern CNNs (Kozlov et al., 2024).

For example, Image Processing Transformer (IPT) achieves significant per-
formance improvements from CNNs like RCAN, but also contains ×7 the num-
ber of parameters, and also underperforms on small datasets. More recent
Transformer-based models such as SwinIR, EDT, and HAT reduce the number
of parameters to be comparable RCAN, whilst achieving better reconstruction
performance when applied to non-specialised SISR, but these models generally
require vast amounts of training data (Kozlov et al., 2024). While Transformers
are effective at enhancing global structure (low-frequency) content, they can also
underperform when trying to recover fine details and edges (high-frequency) (Bai
et al., 2022). Overall, whilst having a high potential for outperforming CNNs
and GANs, we chose to not use Transformers due to their higher performance
cost, relative novelty, and potential underperformance risk.

2.5.4 2D vs 3D Super-Resolution

MRI captures the brain as a 3D volume, making 3D super-resolution preferable
to SISR, since inter-slice relationships contain valuable information. Sanchez
and Vilaplana (2018) extended the SRGAN structure to accept 3D data, and
Wang et al. (2020) applied the ESRGAN structure to 3D MRI data. However,
3D models are more computationally expensive than 2D models and normally
require the volume to be split into patches. U and M. (2024) merged three
consecutive slices into one, which reduces the computational cost while allowing
the model to build a limited view of 3D information, achieving promising results
when applied to MRI images. We did not focus on pure 3D super-resolution
due to the computational intensity, and while the slice interpolation approach
by U and M. (2024) was intriguing, we wanted to focus this project on exploring
different models and loss functions.

2.6 BraTS 2024 Dataset

The BraTS 2024 dataset is a combination of several smaller MRI datasets,
designed for different sub-challenges in the BraTS 2024 challenge cluster. The
primary reason why we selected this dataset is due to its ease of access, while
other brain MRI sets would likely be appropriate, our institution hosts this
dataset on an institutional GitLab repository making it easy to use. The dataset
is split into the following categories:
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Dataset Challenge Training
Size

Validation
Size

BraSyn Synthesis (Global) - Missing MRI 1251 219
GLI Segmentation - Adult Glioma Post Treatment 1350 188
GoAT Segmentation - Generalizability 1351 451
LocalInpainting Synthesis (Local) - Inpainting 1251 219
MEN-RT Segmentation - Meningioma Radiotherapy 500 70
MET Segmentation - Brain Metastases 652 88
Path Pathology N/A N/A
PED Segmentation - Pediatric Tumors 261 91
SSA Segmentation - BraTS-Africa 60 0

The only datasets that contain T2F scans are BraSyn, GLI, GoAT, MET, PED
and SSA. Each of the scans contain a lesion, and a ground truth segmentation
map denoting the location and sections of the lesion. Each of the scans are also
taken in T1C, T1N, T2F, and T2W, creating a directory structure as follows:

BraTS-DATASET-PATIENT-VISIT

BraTS-DATASET-PATIENT-VISIT-t1c.nii.gz

BraTS-DATASET-PATIENT-VISIT-t1n.nii.gz

BraTS-DATASET-PATIENT-VISIT-t2f.nii.gz

BraTS-DATASET-PATIENT-VISIT-t2w.nii.gz

BraTS-DATASET-PATIENT-VISIT-seg.nii.gz

We chose to focus this project singularly on the BraSyn dataset. The PED,
SSA, and MET datasets did not contain enough scans to warrant use on their
own, though we could have merged them into a single training set with BraSyn,
1251 scans was already pushing our hardware to the limit. While GLI contained
the most scans, they were lower quality, with each slice along the axial plane in
the BraSyn dataset being 240 × 240 as opposed to 180 × 218 which resulted in
a clearer and less pixelated image.

The Brain MR Image Synthesis for Tumor Segmentation (BraSyn) dataset
is used in the BraTS 2023 challenge (Li et al., 2024) and is based on the RSNA-
ASNR-MICCAI-BraTS-2021 challenge (Baid et al., 2021). It contains a diverse
set of scans from different institutions and scanners, making it useful in creating
a model that tries to generalise the process of 1.5T to 3T enhancement across
a number of settings. Each scan in the dataset contains 155 slices of 240 × 240
along the axial plane.
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Chapter 3

Methodology

We developed a simulation pipeline that estimates to generate 1.5T-like scans
from 3T images and applied it to the BraTS dataset to create LR,HR pairs,
where the HR data consists of the original 3T scans from BraTS and LR scans
were generated from the HR scans using our pipeline. Using these pairs as
training data, we trained an ESRGAN model to enhance 1.5T images to 3T-
quality.

3.1 Simulation Pipeline

Figure 3.1: Example of slice before (left) and after (right) simulation pipeline.

Our simulation pipeline takes a high resolution 3D MRI scan volume HR ∈W×H×D

from the BraSyn subset of the BraTS dataset, where W,H,D represent spatial
dimensions. The pipeline first transforms HR into the frequency domain via
the Fourier transform:

K = F (HR)
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The pipeline transforms HR into LR ∈W×H×D using a series of transformations
T (K) on its k-space frequency component to simulate GRAPPA and Partial
Fourier acquisition protocols.

K̃ = T (K)

In reality, T (K) represents a set of transformations:

T (K) = T3(T2(T1(K)))

Where:

� T1 represents a cylindrical low-pass filter with a Tukey window.

� T2 represents GRAPPA acquisition simulation.

� T3 represents Partial Fourier.

A noise component ϵ is then added to the resultant k-space volume, and the
volume is then converted back into the image domain through another Fourier
transform to create the final volume LR.

LR = F−1(K̃ + ϵ)

A visualisation for the process on a single 2D MRI slice can be seen in Figure
3.2.

Figure 3.2: 3T to 1.5T Simulation Pipeline

3.1.1 Conversion into Frequency Domain

We first use a Fast Fourier Transform (FFT), denoted as F , to convert the
HR image into k-space. We then normalise the image using unitary FFT
normalisation.

K =
F (HR)√
Nx ·Ny ·Nz

This normalisation keeps the overall intensity the same before and after the
transform, so the image doesn’t get artificially brighter or darker when con-
verted.

3.1.2 Cylindrical Low-Pass Filter with Tukey Window

After converting the volume from the spatial domain into k-space, we first apply
a cylindrical low-pass filter to the k-space Kz,y,x, zeroing out any values outside
the filter. When thought of slice-wise, this effectively draws a centred circle
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on each slice of 2D k-space and zeroes out values outside this circle. We then
smooth the edges of this window by applying a Tukey function along the radius
of this filter to reduce unwanted artefacts.

T1(Kz,y,x) = Kz,y,x · w(r(z, y))

The first step of this process is computing the distance r(z, y) of each point
(where height and width are y and z) from the centre of 2D k-space cy, cz.
These values are then scaled with a filter radius parameter R which we set to
half the width of the image so that values outside the radius are greater than 1
and values inside are less than 1.

r(z, y) =

√
(y − cy)2 + (z − cz)2

R

Using r(z, y), We then smooth out the edges using a Tukey window w(r). There
are three categories of smoothing, the passband, taper region, and stopband:

1. Values inside the passband (r ≤ 1 − α) retain their full original intensity
as these are well within the filter radius.

2. Values inside the taper region (1−α < r ≤ 1) lie close to the filter radius,
therefore their intensities near the outer edge are tapered from 1 to 0 using
a cosine function

3. Values inside the stopband (r > 1) are completely suppressed as these are
outside filter radius.

We manually calibrate the steepness of the tapering with the smoothing param-
eter α which we set to 0.5.

w(r) =


1, r ≤ 1 − α
1
2

[
1 + cos

(
π r−1+α

α

)]
, 1 − α < r ≤ 1

0, r > 1

The resulting filter and effect of T1 can be seen in Figure 3.3 below:
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Figure 3.3: Filter (left) and resulting k-space (right) after applying T1.

k-Space Filter Justifications

The reason that we opted for a k-space filter similar to the one used by Ayaz
et al. (2024) and not a kernel-based method similar to Shi et al. (2015) our
approach is slightly more realistic for 3T to 1.5T image degradation. When scans
are taken at 1.5T, the SNR is inherently lower (see Section 2.2.1), meaning that
signal found at the edges of k-space which represent finer details are obscured
by noise data whereas the opposite is true for more central portions. The result
is that contrast and structure is preserved whilst finer detail is obscured in the
final image for lower-field scans.

Even though the blurring effect and comparative lack of detail caused by
lower-field scans appears similar to standard uniform blurring, they are not
exactly the same. Uniform blurring techniques, such as ones used by Shi
et al. (2015), pass a Gaussian kernel over the image, which smooths the image
uniformly for the whole image as opposed to varying spatially depending on
frequency content. It is also difficult to target exact frequency components
using uniform blurring whereas filtering in k-space allows us direct control
over the frequency bands to suppress. Another issue would be that tissue
boundaries, such as the boundary between white matter and cerebrospinal fluid,
could be blurred in an unrealistic manner due to the softening effect of uniform
blurring. Using a k-space filter keeps these sharper in a more realistic manner

32



as boundaries tend to be found in the more central regions of k-space which are
entirely preserved. Overall, using k-space degrades images in a more true-to-life
manner by operating in k-space.

Cylindrical Low-Pass Filter Justifications

The specific low-pass filter that we used was cylindrical (or circular if observed
slice-wise). The circular shape was mainly used to avoid streak artefacts which
could be present if a square shape, or indeed any shape with distinct edges,
were used (Figure 3.4). Additionally, frequency data is naturally radial in the
sense that the distance from the origin at any angle represents the frequency
magnitude (lower spatial frequencies towards the centre and higher towards
the edges), so it would not make sense to apply a filter that treats frequencies
unevenly along different directions. For example, a square filter includes higher
frequencies at its corners than along the middle of its sides because the corners
are further from the origin in k-space, allowing higher frequency components in
those diagonal directions.

Figure 3.4: Artefacts caused by using a different square filter.

We chose to use the radius parameter R equal to half the width of the image
as this matches the spatial resolution ratio between 3T and 1.5T plus added
leeway for the Tukey window. 3T scans tend to contain more frequency content
than 1.5T, meaning that their maximum frequency fmax in k-space is higher.
We create an estimation for this ratio based off of their respective isotropic
resolution, where 3T scans have a higher isotropic resolution than 1.5T.

r =
fmax,1.5T

fmax,3T
=

v3T
v1.5T
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This ratio is then multiplied by the original 3T radius R3T , and the result is
used as the 1.5T radius R.

R = r ×R3T

The BraTS dataset contains 3T scans that have an isotropic resolution of 1mm3.
Whilst there is not one true isotropic resolution for 1.5T scans, Ayaz et al. (2024)
used a 0.7mm and 1mm resolution for their HR and LR sets, so we also opted
for a similar ratio of 1mm and 1.5mm. This gave us an R value of 2

3 .

Figure 3.5: Effect of varying radii on the spatial image.

Tukey Window Justifications

The main reason for including a Tukey window on the radius of our low-pass
filter was to avoid ringing artefacts caused by the harsh cut-off in k-space due
to the filter. The purpose of the pipeline is to create a realistic simulation so
that any artefacts are drawn from real acquisition techniques, so any artificial
effects introduced by overly abrupt truncation were removed.
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Figure 3.6: Example of ringing artefacts caused by not having a Tukey window.

The main reason as to why we used a Tukey window was because the window
plateaus at the top and contains smoothing where the gradient tapers off at
both extremes with the steepest gradient being in the centre. This means
that the intensities scale in a non-abrupt manner. The plateau ensures that
any values within the passband radius do not have their intensities changed,
concentrating any smoothing effect on the border. Overall, any alternatives
that contain a cosine taper and a plateau would be equally viable. In the
end, the smoothing parameter α = 0.4 was chosen through visual inspection of
several slices as we observed the least ringing artefacts at this particular value
whilst still maintaining the radius chosen using r.
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Figure 3.7: Examples of different artefacts caused by varying α.

3.1.3 GRAPPA Acquisition Simulation

After degrading the k-space using our filter T1, we then run the filtered k-space
through a simulation of GRAPPA acquisition, denoted as T2.

GRAPPA in Clinical MRI

As mentioned in Section 2.1.7, GRAPPA is a commonly used parallel imaging
protocol, used to reduce acquisition time by capturing an undersampled version
of k-space with multiple receiver coils simultaneously. This section will explain
it in more detail.

GRAPPA first requires a fully sampled strip of k-space, which is called the
Autocalibration Signal (ACS), from all receiver coils. It also captures every N
lines parallel to the ACS, which are kept constant across all coils. This process
leaves missing points in k-space parallel to the ACS. This sampling pattern can
be seen in Figure 3.8.

Figure 3.8:

GRAPPA assumes that a missing point in k-space ÂCS(x, y) can be predicted
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by using the weighted sum of its neighbours across all coils using a 3D kernel.

ÂCS(x, y) = w · n(x, y)

Figure 3.9: Diagram of single ACS prediction using kernel.

Here, n(x, y) is a vector containing all acquired points from the local neighbor-
hood around (x, y) across all coils, and w contains the corresponding learned
kernel weights. This kernel is trained using linear regression, least-squares, or
another appropriate method to learn the weight values in the kernel w.

w = argmin||YACS −XACS ·w||

Once the kernel weights are trained, it is passed over each of the missing k-space
data points and used to fill in the missing values, creating complete k-space data.

The reason we chose to simulate this protocol in the pipeline was because we
wanted to see if we could train a model to eliminate bad acquisition artefacts
commonly used in 1.5T MRI such as SENSE or GRAPPA. Whilst there exists
models which aim to super-resolve 1.5T to 3T-like quality, there has not been
much focus on particular acquisition protocols which are common in 1.5T scans.
These protocols can sometimes leave artefacts, which are worth correcting as a
model trained to purely solve 1.5T to 3T super-resolution may struggle when
faced with scans from standard MRI machines which have not been properly
calibrated in 1.5T. Whilst there is evidence that 3T scans generally contain
more artefacts than 1.5T due to their increased SNR (Bernstein et al., 2006),
in a super-resolution task, it is more clinically advantageous if a model can
be trained to cancel out these acquisition artefacts rather than replicate them,
hence why our LR set contains GRAPPA artefacts and the HR does not, which
may not necessarily reflect real-life. More broadly, if we can successfully correct
artefacts introduced by GRAPPA, this could eliminate the need for longer non-
GRAPPA acquisitions, thereby improving imaging efficiency without sacrificing
quality. The main reason we specifically focused on simulating GRAPPA over
a popular alternative SENSE was because SENSE requires coil sensitivity maps
to make predictions, which we do not have access to.

Our Process Overview

With the background knowledge of how GRAPPA functions, our simulation T2
can be explained. First we perform Cartesian undersampling, using a 3D mask
of the same shape as the 3D k-space volume using a defined gap between each
line and an ACS region of width, both of which are set to 1 whilst the missing
values are set to 0.

The second stage involves reconstructing the missing lines using interpo-
lation. We first extract the ACS region and use it to train the weights of a
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2D kernel using least squares. The BraTS dataset does not contain data from
multiple coils for each slice, so we treat k-space as a single coil. This means that
our data for each slice is only 2D as opposed to 3D, meaning that we only train
a 2D kernel, not a 3D one. Afterwards, this kernel is passed over each missing
point in k-space and used to predict its value.

T2(Kz,y,x) = Treconstruct(Tundersample(Kz,y,x))

Sampling Maps

In more detail, we first create two masks, one representing the Cartesian stripe
pattern Mcart and one representing the ACS central stripe MACS . These are
then merged into one map where the maximum value takes overwrites a smaller
value, making the operation equivalent to a logical OR ∨ as only values 0 and
1 exist in the masks. The k-space is then multiplied by each mask.

Tundersample(Kz,y,x) = (Mcart ∨MACS) ·Kz,y,x

For our first map Mcart, we start off with a zero-filled map. We then define a
gap width between lines R and set every gth line to 1. In our final version we
set R = 4:

Mcart(z, y, x) =

{
0, if y mod R = 0

1, otherwise

For the ACS map MACS , we also start off with a zero-filled map. We define the
ACS spine width s = 64, and set a “spine” region using the following where Y
represents the height of the k-space:

y ∈
[Y − s

2
,
Y + s

2

]
Using this spine definition and the zero-filled map, we then fill any points that
lie in the spine region with 1:

MACS(z, y, x) =

{
1, if Y−s

2 ≤ y ≤ Y+s
2

0, otherwise

As seen in Figure 3.10, our sampling map is very similar to a typical GRAPPA
sampling map, including a similar ACS.

Figure 3.10: Our map (left) compared to a real GRAPPA sampling map (right).
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Typically, the level of undersampling (equivalent to our parameter R) ranges
from around 2-4 (Chang et al., 2022), with values higher than 4 leading to
a disproportionately higher level of artefact the more it is increased. As we
wanted to simulate a relatively high level of artefact for our model to learn, we
opted for R = 4. We based the ACS width parameter s on real-world ACS
width in proportion to k-space, keeping in mind that our kernel will necessarily
underperform as there is only data from one “coil”. Typically ACS width ranges
from 5% to 11% of the image for R = 4 (Chang et al., 2022), so in our case of a
256×256 voxel image this would range between s = 16 and s = 30. However, we
decided to increase this to s = 64 as we expect significant extra degradation as
we have only one reference coil. This lead us to an appropriate level of artefact
that didn’t fully obscure anatomical details (Figure 3.11).

Figure 3.11: Image and k-space after applying our sampling maps.

GRAPPA-Style Reconstruction

For our reconstruction method Treconstruct, we essentially operate the same
method as standard GRAPPA reconstruction mentioned in Section 3.1.3, but
only using one coil. First, the ACS region A is retrieved from the previous step.

Az,y,x = MACS ·Kz,y,x

39



From A, we take every odd-indexed line and treat it as missing, adding it to a
target set Y. For each such line, we extract the neighbourhood of lines centred
on it (based on the kernel size k), which we flatten and store as a training
example in X . We use a kernel width of k = 3 so each training input contains
one line above and one line below the target centre line. We opted for a kernel
that encompasses the width of the entire line to compensate for the lack of coil
information. Standard GRAPPA relies heavily on inter-coil correlations, so we
compensate by using full lines which gives our kernel more context to make
predictions. Using entire lines also mean that the predictions are less sensitive
to noise of small artefacts than small windows.

Figure 3.12: Example of X and Y given a kernel size of k = 3.

Using our training and test set, we train the weights w of a 2D kernel of size
k × k using linear regression.

w = argmin||X − Y||22

These weights are then applied across the k-space slice to estimate missing lines.
For each missing line, the neighbouring lines Nz,y,x are multiplied by the learned
w, then scaled using a signal multiplier α = 1000, and finally filled in.

K̂z,y,x =

{
α · (Nz,y,x · w), if Kz,y,x = 0

Kz,y,x, otherwise

Overall, our two-step process of undersampling and reconstructing k-space does
create more intense aliasing artefacts than normal GRAPPA-acquired images.

Figure 3.13: Comparison of image transformed using our GRAPPA simulation
(left) and a real GRAPPA image with artefacts (right), taken from MRI Master
(2023).

3.1.4 Partial Fourier Acquisition Simulation

After simulating GRAPPA acquisition artefacts using T2, the final stage is to
simulate partial Fourier acquisition effects using the transformation T3. Like in
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T2, this consists of both an undersampling Ttruncate and reconstruction phase
Treconstruct.

T3(Kz,y,x) = Treconstruct(Ttruncate(Kz,y,x))

Hermitian Symmetry

Partial Fourier relies on a concept called Hermitian symmetry. In the image do-
main, each voxel is real-valued, meaning that they do not contain an imaginary
component. However, Fourier transformed real-values are complex numbers,
meaning that they contain both a real sa and an imaginary component b:

F(k) = a + ib

To retrieve the complex conjugate F ∗(k) of a complex number, we simply swap
the sign of the imaginary component:

F∗(k) = a− ib

If a signal f(x) is real-valued, then its Fourier transform F(k) sat-
isfies:

F(−k) = F∗(k)

As k-space is the Fourier domain representation of a spatial MRI image, since
the MRI image is real-valued (voxel value is equal to the greyscale intensity), its
k-space representation obeys Hermitian symmetry. This means that one half of
k-space is the complex conjugate mirror of the other half, theoretically meaning
that only half of k-space needs to be sampled to form a full image.

k-Space Truncation

Our truncation phase simply creates a binary mask of the same shape as the k-
space volume where a fraction of the mask is set to zero at an axis perpendicular
to the GRAPPA ACS lines.

Ttruncate(Kz,y,x) = Kz,y,x ·Mfourier

We simulate these sampling strategies perpendicular to each other as this is
reflective of what is typically used in MRI machines, as using them parallel to
each other can cause an increased level of artefacts () and it also means that
the protocols do not overlap.

In real life, GRAPPA is applied first, then partial Fourier reconstruction
along orthogonal axes as this is the only way in which Hermitian symmetry
holds. When GRAPPA is applied first, its reconstruction means that each line
along the partial Fourier axis is fully sampled, despite only containing a partial
extent. This allows Hermitian symmetry to be valid, and a reflection to be
made.

If N is the length of the axis perpendicular to our GRAPPA ACS direction,
in our case N = 256, and f represents the fraction of k-space sampled, we chose
f = 5

8 , then our binary mask can be defined as follows:

Mfourier =

{
1 if i ≥ N − (f ·N)

0 otherwise
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The resulting k-space can be seen in Figure 3.14

Figure 3.14: Example of k-space being truncated using Ttruncate.

The reason that we used the parameter f = 5
8 is because it matches sampling

fractions typically used in partial Fourier (Haldar and Liang, 2022), and it
also strikes a balance, where visible artefacts can be seen in the resulting
reconstructed image but do not overwhelm the true signal to a great extent
(Figure 3.15).

Figure 3.15: Partial Fourier reconstruction with f = 6
8 (left), f = 5

8 (middle),
f = 4

8 (right)

Hermitian Symmetry-Based Reconstruction

To perform the reflection, we define K∗ as the complex conjugate of K. The
Hermitian reconstructed k-space is given by:

K̂z,y,x =

{
Kz,y,x if Mz,y,x = 1

K∗
z,y,x if Mz,y,x = 0
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Figure 3.16: Before (left) and after reconstruction (right).

3.1.5 Noise

The final step of our pipeline is to simulate realistic acquisition noise ϵ from MRI
scanners to mimic the noise mentioned in Section 2.2.1. We aim to simulate
background noise, arising from factors such as coil resistance or electronic noise,
not any structured noise caused by motion, as the presence of structured noise
isn’t as predictable as it is influenced by factors that are further disconnected
from magnetic field strength.

Background Information on Gaussian and Rician Noise

As k-space is complex, it contains a real and imaginary component, evidence
suggests that the noise in these components is independent and both follow a
zero-mean Gaussian distribution (Gudbjartsson and Patz, 1995). This means
that for each voxel, the intensity of the noise (not including the underlying
signal) in either the real or imaginary part can be mapped onto a Gaussian
distribution. In practice, this means that the noise can be either positive or
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negative, with a higher likelihood that the noise intensity is closer to 0 but a
small chance that it is higher. We can see an example of what this noise looks
like in Figure 3.17

Figure 3.17: A Gaussian distribution (left) (Truax, 1999) and the noise map
generated using it (right) (Stanford University, 2011).

However, when the k-space is converted into the image domain through a Fourier
transform, we take the magnitude of both the real and imaginary components
to form a single brightness value M .

M =
√

(real + nr)2 + (imag + ni)2

This results in M following a Rician distribution (Gudbjartsson and Patz, 1995),
meaning that for each voxel, the intensity of the combined signal and noise can
be mapped onto a Rician distribution. The Rician distribution is slightly skewed
right and has a mean above zero, meaning that voxel intensities are more likely to
be less intense. This is slightly complicated by the fact that areas with different
SNR follow slightly different distributions. Additionally, it is worth mentioning
that background areas with no signal actually follow a Rayleigh rather than a
Rician distribution.
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Figure 3.18: Characteristics of Rician noise in MRI. From top-left to top-right:
a 2D T1-weighted MR image corrupted by 15% of Rician noise and a mask
image separating the background, low-SNR and high-SNR regions. As shown,
the Rician noise tends to be Gaussian distributed when SNR is high (bottom-
left) and Rayleigh distributed when SNR is close to zero (bottom-right). In
low-SNR regions, the Rician noise tends to be neither Gaussian nor Rayleigh
distributed (bottom-middle). (Liu et al., 2014)

Our simulation

In our simulation, we chose to add Gaussian noise to the real and imaginary
components of k-space so that the spatial image would follow a Rician distribu-
tion in magnitude, matching the real-life characteristics mentioned earlier. The
noise map ϵ that we added is defined below where σ = 0.005:

ϵ = N (0, σ2) + i · N (0, σ2)

As mentioned earlier, to acquire the final image, we add this noise map to the
k-space and use a Fourier transform with unitary FFT normalisation to convert
the image back into the spatial domain, creating our final image LR.

LR = F−1(K̃ + ϵ)

Figure 3.19 shows an example of a single MRI slice with and without our noise
function added in k-space
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Figure 3.19: Noise before (left) an after (right) addition of Rician noise.

3.2 Model Architectures

This section outlines the architecture of ESRGAN and FSRCNN, which are the
two deep-learning models that we tested for the super-resolution task.

3.2.1 ESRGAN

The ESRGAN model is built upon residual blocks, which are grouped together
into Residual-in-Residual Dense Blocks (RRDBs), which are stacked in series to
create the generator. It also contains a discriminator which mainly consists of
convolution layers. Our architecture was very similar to the architecture used
by Ayaz et al. (2024).

46



Figure 3.20: Internal Architecture of the ESRGAN generator.

Dense Block

Figure 3.21: Dense Block Diagram

At the lowest level of the ESRGAN structure are dense blocks, which consist
of 5 2D convolution layers with 3 × 3 kernels. The first 3 convolution layers
expand the number of channels by 32 and the final layer matches the number of
channels to the input tensor. Each of the first 4 convolution layers is followed
by a leaky ReLU (LReLU) activation function and the final convolution does
not pass through any activation function. Importantly, after each feature map
from a convolution layer is passed through the LReLU activation, maps are
concatenated along the channel dimension, maintaining the spatial dimensions.
The dense block can be seen below where the input xC×H×W contains C input
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channels:

x1 = LReLU0.2(Conv2D64→32
3×3 (x))

x2 = LReLU0.2(Conv2D96→32
3×3 ([x, x1]))

x3 = LReLU0.2(Conv2D128→32
3×3 ([x, x1, x2]))

x4 = LReLU0.2(Conv2D160→32
3×3 ([x, x1, x2, x3]))

x5 = Conv2D192→64
3×3 ([x, x1, x2, x3, x4])

y = x + 0.2 · x5

We set the LReLU slope to 0.2 and also add a final scaling factor to 0.2 based
on the implementation in the official ESRGAN repository Wang (2018), based
on the model described in the paper Wang et al. (2018).

The rationale behind using a dense block is that each block uses the original
input and every prior convolution output, not just the final activated layer. In
practice, this gives the model more context the model can see low and mid-level
features (such as corners, edges, and angles) simultaneously alongside abstract
features (like anatomical information). This is beneficial in super-resolution
as reconstructing detailed textures requires an understanding the context of
textures within a local area and within the entire image simultaneously (Wang
et al., 2018).

RRDB

Figure 3.22: RRDB Diagram

An RRDB, also designed by Wang et al. (2018), consists of 3 stacked dense
blocks together. A residual connection is added around the entire block, mean-
ing that the input to the whole RRDB is added to a scaled output of the RRDB.

x1 = RDB1(x)

x2 = RDB2(x1)

x3 = RDB3(x2)

y = x + 0.2 · x3

RRDBs are effective in super-resolution tasks as residual connections outside the
blocks provide a shortcut for gradients during backpropagation, which reduces
vanishing gradients. This means that if signal becomes too weak inside an
RRDB due to redundant features and the gradients disappear, they won’t vanish
entirely as the residual connection allows gradients to flow around the dense
blocks so that earlier layers can update gradients and continue training (Sharif
et al., 2024).
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Generator

Figure 3.23: ESRGAN Structure

We employ a shallow ESRGAN for our generator, based on implementation by
Ayaz et al. (2024). Our ESRGAN is 2D, designed to enhance a single LR slice
with the same spatial dimensions as the corresponding HR slice. Our model
also expects slices to have 1 channel dimension, as voxels in MRI are greyscale
rather than RGB (which would require 3 channels). The model also expects
input tensors x with spatial dimensions of 256× 256. The first operation in the
generator is a 2D convolution layer with a 3 × 3 kernel and 64 output channels
generated from 1 input channel:

x1 = Conv2D1→64
3×3 (x)

Feature maps in x1 are saved for the residual connection later on. Afterwards,
x1 is passed through N consecutive RRDB blocks and finally through another
2D convolution layer with a 3 × 3 kernel and 64 output channels. We tested
both N = 1 (the number of blocks that used by Ayaz et al. (2024)) and we tried
N = 3 to try and improve performance.

x2 = Conv2D64→64
3×3 (RRDBN (...(RRDB2(RRDB1(x1)))...))

We then activated a residual connection between the initial convolution output
x1 and the post-RRDB feature maps x2.

x3 = x1 + x2

After the residual connection, we processed x3 through another identical 2D
convolution block, mirroring implementation by Ayaz et al. (2024). In a stan-
dard ESRGAN, there would be an upsampling layer Wang et al. (2018), but our
HR and LR have the same spatial dimensions, so upsampling isn’t needed.

x4 = Conv2D64→64
3×3 (x3)

We then pass x4 through a LReLU activation with a slope of 0.2, mirroring
implementation by Ayaz et al. (2024).

x5 = LReLU0.2(x4)

x5 is passed through a final 2D convolution layer which takes the 64 input
channels and matches it to the desired output channel size of 1, also containing
a 3 × 3 kernel.

yConv2D64→1
3×3 (x5)
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Discriminator

The discriminator is a separate model which takes an output from the generator
(a simulated slice generated from LR or a slice from the HR set) and classifies
the image as real or generated. The architecture can be seen in 3.24 which takes
inspiration from Ayaz et al. (2024), resembling a standard CNN image classifier.

Figure 3.24: ESRGAN Discriminator Structure

The model begins with a 3 × 3 2D convolution that extracts 64 feature maps.
It is then passed through an LReLU activation with slope 0.2.

x1 = LReLU0.2(Conv2D64
3×3(x))

Feature maps then pass through 7 convolutional blocks, each containing a
2D convolution layer (with a 3 × 3 kernel), batch normalisation, and LReLU
activation with a 0.2 slope. Blocks are divided into two categories:

Di(z) = LReLU0.2(BN(Conv2DCi,s=2
3×3 (z))) (Downsampling block)

Fi(z) = LReLU0.2(BN(Conv2D2Ci,s=1
3×3 (z))) (Feature extraction block)

Downsampling blocks preserve the number of feature maps Ci but halve the
spatial resolution with stride s = 2, reducing the resolution while preserving
existing features, reducing compute whilst maintaining semantic information.
Feature extraction blocks preserve spatial resolution by setting stride s = 1
but double the number of features maps 2Ci, enabling the extraction of deeper
semantic information from the image. This structure, used in VGG architecture
(Simonyan and Zisserman, 2015), maintains stability whilst training and keeps
a reasonable model size. We chose to apply 7 convolutional blocks (4 downsam-
pling and 3 feature extraction), differing from Ayaz et al. (2024) as we don’t
employ a patch-wise approach, focusing on input sizes matching a standard
MRI slice (256 × 256). Ayaz et al. (2024) used a patch-wise approach with
patch sizes of 64×64. We made the assumption that a higher spatial resolution
would naturally require more model depth, so we chose the maximum depth
that would fit into our system memory.

x2 = F3(D4(F2(D3(F1(D2(D1(x1))))))

Finally, the convolution block output is converted into a classification by a
classifier block. We first pass the results through an average pooling layer,
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resizing feature maps to 4 × 4 resolution. Feature maps are then flattened into
a long 1D vector, and compressed into 100 dimensions using a fully-connected
layer. The 100-dimensional vector passes through a LReLU and then a fully-
connected layer to create a single classification score.

x3 = AdaptiveAvgPool2D4,4

x4 = Flatten8192

x5 = Linear8192→100

x6 = LReLU0.2(x3)

y = Linear100→1

3.2.2 FSRCNN

We also experimented with CNN super-resolution, choosing FSRCNN (Dong
et al., 2016) for its competitive performance in super-resolution tasks compared
to other CNNs (see 2.5.1). We tested a CNN to validate our assumption that
GANs would perform better, since GANs require much longer training.

Figure 3.25: FSRCNN Structure

The model is relatively simple, containing five sections:

1. Feature Extraction: First the 1-channel image is passed through a 2D
convolution layer with a kernel size of 5 × 5, outputting d = 56 channels.
It then runs through a Parametric ReLU (PReLU) activation function.

x1 = PReLU(Conv2D1→d
5×5 (x))

2. Shrinking: Next the d-channel feature maps are passed through another
2D convolution layer and PReLU activation. This convolution layer differs
as it converts the d-channel feature maps into s features, and also only
has a kernel size of 1 × 1. It is recommended by Dong et al. (2016) to set
d > s as this step reduces the number of parameters while maintaining a
similar PSNR, in this case we set s = 12.

x2 = PReLU(Conv2Dd→s
1×1 (x1))

3. Mapping: The next layer is called the mapping layer, which contains
m stacked 2D convolution layers (all with 3 × 3 kernels, and s input and
output features) and PReLU activation functions.

x3 = PReLU(Conv2Ds→s
3×3 (x2))

x4 = PReLU(Conv2Ds→s
3×3 (x3))
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x5 = PReLU(Conv2Ds→s
3×3 (x4))

x6 = PReLU(Conv2Ds→s
3×3 (x5))

The specific combination s = 12, d = 56, and m = 4 is also tested
in the paper and achieves the best trade-off between performance and
parameters.

4. Expanding: Afterwards, the number of channels are expanded from s
back to d using an expanding layer:

x7 = PReLU(Conv2Ds→d
1×1 (x6))

5. Deconvolution: Finally, the output is de-convoluted back into a final
single-channel output image:

x8 = PReLU(Conv2Ds→1
5×5 (x7))

3.3 Loss Functions

We used a composite loss function for our generator Lgen, which is the weighted
sum of multiple loss functions designed to penalise different aspects of the image:

Lgen = λ1Lpixel + λ2Lperc + λ3Ledge + λ4Lfourier + λ5Lstyle + λ6Ladv

We also experimented with each of the loss functions individually in combination
with the adversarial loss Ladv. To train the discriminator, we used a separate
loss function Ldisc.

Pixel Loss

We use a simple mean absolute error (MAE) to deduce the pixel loss between
images. Pixel loss measures how different the intensities of each pixel are
from SR to HR, without targeting specific features like edges or structures,
representing a stable measurement for how different the two images are. MAE
is calculated by taking the absolute difference between SR and HR, averaging
these differences across all pixels:

Lpixel =
1

N

N∑
i=1

|SRi −HRi|

We chose MAE over mean squared error (MSE), as MSE often produces blurrier
GAN images (Ledig et al., 2017), whilst MAE produces sharper images (Zhao
et al., 2017). We included this loss following Ayaz et al. (2024), who weighted it
at λ1 = 0.3 with positive results on a similar super-resolution task. This weight-
ing was achieved using an ablation study to empirically determine the weight
combination that maximizes sharpness of edge pixels, where the other two loss
functions were perceptual loss λ2 = 1.0 and edge loss λ3 = 0.7. Additionally,
L1 loss is a standard benchmark in super-resolution, so not including it would
limit comparability.
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Figure 3.26: Pixel loss intensity map (middle) between LR (left) and HR
(right).

Perceptual Loss

The perceptual loss function Lperc is included to measure the semantic differ-
ences between SR and HR by generating and comparing feature maps for both
images using a pre-trained VGG19 CNN. These feature maps represent higher-
level structures, such as the global shape of the brain, different tissue textures,
and anatomical regions.

VGG19 expects a 3-channel image, but both SR and HR are 1-channel
images, so we first stack each image across the channel dimension:

S̃R = [SR, SR, SR], H̃R = [HR,HR,HR]

Each channel c in S̃R and H̃R is then normalised using the normalisation
function vc to match the domain of ImageNet so that any inputs to the model
lie within the same distribution as the data it was pre-trained on.

v(x)c =
xc − µc

σc

Where:

µ = [0.485, 0.456, 0.406]

σ = [0.229, 0.224, 0.225]

So:
SRnorm = v(S̃R), HRnorm = v(H̃R)

The normalised inputs SRnorm and HRnorm are then passed through VGG19
to extract high-level feature maps. The MAE between the two feature maps
gives us the perceptual loss Lperc.

Lperc =
1

N

N∑
i=1

|V GG(SRnorm) − V GG(HRnorm)|

VGG19 was pre-trained using ImageNet-1K, meaning that the model’s weights
are calibrated using the ImageNet-1K dataset, which can be broken into 12
categories: mammal, bird, fish, reptile, amphibian, vehicle, furniture, musical
instrument, geological formation, tool, flower, and fruit (Deng et al., 2009).
Whilst this is a domain mismatch as VGG19 is designed to generate feature
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maps for 3-channel natural images as opposed to 1-channel MRI scans, CNNs
trained with ImageNet are shown to generalise well to new domains as they
can capture compositional structures, texture, and motifs, which tend to be the
building blocks of any image type regardless of domain (Yosinski et al., 2014).
Additionally, this model was used by Ayaz et al. (2024) inside their composite
loss function with a weighting of λ2 = 1.0, which specifically focused on MRI
super-resolution. Therefore, we didn’t fine-tune our VGG19 model with MRI
data, though this could be a potential improvement. Perceptual loss was also
proposed by Wang et al. (2018) and was found to provide sharper edges and
more visually pleasing results, making it valuable given the problem similarity.

Figure 3.27: Perceptual loss intensity map (middle) between LR (left) and HR
(right).

Edge Loss

To mitigate blurriness caused by pixel loss we included edge loss, which penalises
differences in edge structure, leading to images with sharper boundaries. As
mentioned earlier, Ayaz et al. (2024) uses edge loss weighted at λ3 = 0.7,
indicating its suitability for the task.

Let HR ∈W×H denote a high-resolution ground truth 3T image, and SR ∈W×H

denote the super-resolved image generated by the model, where W represents
the width and H represents the height of the image (256 × 256). We first
compute the horizontal and vertical gradient magnitudes of HR. The gradient
magnitude measures how quickly the intensity of an image is changing at any
particular point. For example, flat areas such as white and grey matter have a
smaller gradient magnitude, whilst boundaries between different matter types
(white, grey, CSF and air) would have a high gradient magnitude.

The gradient magnitudes are computed via the Sobel operator, which con-
sists of two kernels that approximate the first-order derivatives in the horizontal
x and vertical y directions:

Kx =

1 0 −1
2 0 −2
1 0 −1

 , Ky =

 1 2 1
0 0 0
−1 −2 −1


Gradient magnitude maps in the horizontal Gx and vertical Gy directions are
computed by a two-dimensional convolution operation:

Gx = HR ∗Kx, Gy = HR ∗Ky
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These are then combined to form a single combined gradient map G:

G =
√
G2

x + G2
y

The loss function then computes the mean absolute error between SR and HR
over the entire batch of size N , weighted by the edge magnitude map.

Ledge =
1

N

W∑
w=1

H∑
h=1

Gw,h · |SRw,h −HRw,h|

This ensures that differences in intensities near edges are given a higher weight-
ing, encouraging the model to prioritise the construction of boundaries, leading
to a sharper super-resolved image.

Figure 3.28: Edge loss intensity map (middle) between LR (left) and HR
(right).

Fourier Loss

The Fourier loss function Lfourier was included as an attempt to penalise
differences in edge structure, essentially serving as a drop-in alternative to Ledge.
It compares the MSE between Fourier transforms F of SR and HR.

Lfourier =
1

N

N∑
i=1

(F (SRi) − F (HRi))
2

Instead of penalising differences in the spatial domain, Fourier loss penalises
major differences in k-space between SR and HR. We intended this loss function
to capture how textures and structures are distributed across frequencies, for
example, low frequency content like global structure is positioned towards the
middle of k-space and high frequency content such as specific textures are
positioned at the edges. As pixel loss and perceptual loss have a tendency
to align intensities well and match the general structure of an image (lower
frequency content), but miss fine textures and edges (high frequency), it can lead
to blurrier content. In theory, Fourier loss could allow a different perspective
for the model to see higher frequency content, as if the magnitudes at the
edges of k-space are very different, they would be penalised in the same way
that lower frequency content is penalised. This could lead to clearer grey-
white matter boundaries or more accurate lesion boundaries, acting as another
method of edge loss. Additionally, our simulation pipeline was a series of k-
space transformations, so we thought it would be interesting to see if the model
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could learn these transformations. If it can, then it leads to another question as
to whether there exists a consistent k-space mapping that translates 1.5T MRI
scans from one machine to equivalent 3T scans from another, which could be
investigated using real-world data.

Figure 3.29: 3D Fourier difference map (middle) between an LR scan (left) and
a HR scan (right).

Style Loss

We experimented with a style loss function designed to penalise differences in
style, which can be thought of as a global texture. While local texture refers
to repeating patterns in a specific area, global texture involves capturing these
patterns across the entire image, similar to an image filter. This concept can
be seen visually in Figure 3.30. We experimented with this type of loss as we
considered the possibility that mapping images from 1.5T to 3T could be seen
as a style change. The spatial resolution of both images is the same, so any
changes would be in contrast, noise characteristics, and artefacts, which could
possibly be better captured by global texture rather than metrics like pixel-
wise content. Therefore, the model could learn to align these global textures,
effectively translating the “style” of 1.5T images into 3T images.
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Figure 3.30: Images that combine the content of a photograph with the style of
several well-known artworks. Taken from Gatys et al. (2015).

The style loss between two images is calculated by comparing the Gram matrices
of feature maps generated using VGG19. We stack the 1-channel LR and HR
into 3-channel images, then normalise and pass into VGG19 in the exact same
way as Section 3.3. This leaves us with:

V GG(SRnorm), V GG(HRnorm)

We then reshape these feature maps into Gram matrices:

GSR =
V GG(SRnorm) · V GG(SRnorm)T

C ·H ·W

GHR =
V GG(HRnorm) · V GG(HRnorm)T

C ·H ·W
Gram matrices represent how similar different feature maps are to each other.
If two feature maps often activate together then the Gram matrix is large. To
achieve a loss value, we compute the MAE between the two Gram matrices:

Lstyle =
1

N

N∑
i=1

|GSRi
−GHRi

|

Figure 3.31 shows the style loss heatmap between a slice.
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Figure 3.31: Style loss map between an LR scan (left) and a HR scan (right).

Adversarial Loss

The key component that makes a GAN work differently to other networks it
the adversarial loss function  Ladv. This enables the generator and discriminator
to continuously compete with each other to generate a realistic fake image and
determine if an image is real or fake respectively. We first pass the LR slices into
the generator G at its current state to form super-resolved slices. We then pass
those super-resolved slices into the current discriminator D, which generates a
scalar value for each slice, the higher the value the more real-looking the image.
Afterwards, we average these discriminator scores over the entire batch and take
the negative, so that the generator is penalised when the discriminator easily
identifies its outputs as fake.

Ladv = − 1

N

N∑
i=1

D(G(LRi))

We set the weighting of this loss function to λ6 = 0.001 following the ablation
study done by Ayaz et al. (2024), who also used a WGAN discriminator and
a similar composite loss function structure, identifying this weighting to be
optimal for maximising edge sharpness.

Wasserstein GAN with Gradient Penalty

To train the discriminator we use the loss function Ldisc. This loss function
first runs the generated SR and real HR sets and runs them through the
discriminator at its current state, it then averages the scores given by the
discriminator for each set.

µSR =
1

N

N∑
i=1

D(SRi), µHR =
1

N

N∑
i=1

D(HRi)

The mean scores of real images µHR should naturally be much higher than
µLR as the discriminator is more likely to understand these inputs to be real.
Therefore, we aim to maximise the difference between scores, which is equivalent
to maximizing the Wasserstein distance:

µHR − µSR

This is equivalent to minimising:

µSR − µHR
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Therefore, our loss function Ldisc uses the following:

Ldisc = µSR − µHR + λgp · Lgp

A weighted gradient penalty λgp · Lgp is also added to enforce the Lipschitz
constraint required for WGANs. This attempts to enforce the discriminator’s
gradients with respect to its input to have a norm close to 1, preventing it from
becoming too confident. We set the weight of this to the recommended value of
λgp = 10 (Gulrajani et al., 2017).

We use the Wasserstein GAN (WGAN) over a standard GAN as it improves
training stability and removes mode collapse (generator producing outputs that
are repetitive or near-identical), which are common issues when training GANs.
Using WGANs also makes the training process more forgiving when changing
model architecture or learning rate, allowing us to conduct experiments with
less risk of the model breaking during training (Arjovsky et al., 2017). This
is something we aim to minimise as we operate under resource and time con-
straints, meaning that we need to make the most out of our limited training
runs. The WGAN was also used by Ayaz et al. (2024) with positive results,
showing its appropriateness for the problem at hand.

Calibration of Loss Function Weights

When combining multiple loss functions in the composite generator loss function
 Lgen we had two methods for deciding the appropriate weighting of λ1, λ2, . . . , λ5.
To find an initial weighting that results in a balanced composite loss function, we
created an untrained generator and generated a set of super-resolved images SR
using the entire HR dataset. We assume that any output from the untrained
generator is always noise as the generator has had no chance to calibrate its
internal weights to fit HR. We then compare SR and HR using our composite
loss function, and log the magnitude values for each individual loss function,
plotting them on a line graph to visualise the difference in magnitudes between
these weights (example graph shown in Figure 3.32).

Figure 3.32: Magnitudes of loss after first pass.

This helps us to calibrate the magnitudes of each loss function so that no one
loss function dominates training from the outset. By visualising the magnitudes
of each loss term at the initial stage where no specific learning has actually
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occurred, we can calibrate the weights so that each component contributes an
equal amount to the final loss Lgen.

Once training has started, we also add the ability to log individual loss
magnitudes so that we are aware if one loss function appears to have an equal
magnitude to the others at the initial stage, but dominates the composite loss
after a certain duration of training, in which case we can scale the weighting
accordingly.

3.4 Training Procedure

The training procedure involves selecting, preprocessing, and augmenting the
BraTS dataset. GAN training involves pre-training the generator, then using
both the generator and discriminator to do adversarial training.

3.4.1 Data Selection

As mentioned in Section 2.6, we used all T2-FLAIR data in the BraSyn which
is a subset of the BraTS dataset. This included a predefined 60 : 10 : 30
training/validation/test split containing a total of 1251 scans in the training set,
219 scans in the validation set, and 570 in the test set. Unfortunately, we do not
have access to the test set so we split the default validation set in half, leaving
110 scans in the validation set, 109 in the test set, and keeping the training split
unchanged. This creates a train/validation/test split of 1251 : 110 : 109. We
then split these volumes into slices along the axial plane to obtain 2D slices for
training.

We opted to use this split for a few reasons. Firstly, we wanted to preserve
the original splits as much as possible, which meant that we left the training
split unaltered to preserve any statistical stratification on factors like scanner
type, and in case the creators of this dataset had intentionally selected certain
scans for each split. We also wanted to expose the model to the maximum
possible training data diversity to ensure that it was not learning scan-specific
characteristics. While we train the model a greater than normal number of slices,
these slices only come from 1251 scans, which is not exceptionally diverse, so we
did not want to risk lowering it any further as it could impact the performance
of the model. That being said, Ayaz et al. (2024) only used a maximum test
set size of 20 scans and a maximum training size of 60 scans, both of which are
significantly smaller than any of our set size, suggesting that strong performance
and generalization are still achievable even with a relatively small number of
unique scans. We opted to split the validation set in half to form validation
and test sets of equal size so that we have sufficient validation samples to
avoid overfitting while tuning hyperparameters, and enough scans to reliably
report generalised performance. It is common for validation and test splits to
be of equal size, so this approach aligns with standard practice. In an optimal
scenario, we would use k-fold cross validation to train and evaluate the model
on the entire dataset, but k-fold cross validation multiplies the training time by
k, and due to time and resource constraints this would have been unfeasible.
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3.4.2 Data Preprocessing and Augmentation

After generating our LR dataset using the pipeline from Section 3.1, we split
both the HR and LR data into slices along the axial plane. Each scan has the
shape 240 × 240 × 155 but the outermost slices were mostly blank (containing
only zeros) or contained a very small amount of useful information (Figure 3.33).

Figure 3.33: Example of slice at index 5 (BraTS-GLI-00000-000-t2f ) with very
little information.

Therefore, we removed any slices with an index below 10 or above 145 leaving
us with scans of shape 240×240×135. This was mainly to condense the dataset
to reduce training time, however including blank slices is also bad practice as
there is no useful signal for the model to learn meaning that any metrics such
as MSE or PSNR can be artificially improved. To take this one step further, we
also removed all slices with a standard deviation below 1 × 10−5, and all slices
where their minimum value is equal to their maximum.

We then normalise each slice x into x̂ using min-max normalisation to rescale
the data values to a standard range as neural networks are generally sensitive
to the scale of data and work best with normalised inputs. Leaving the slices
unnormalised may lead to numerical instability and may cause exploding or
vanishing gradient issues.

x̂ =
x− min(x)

max(x) − min(x)

We then upscale each slice from 240 × 240 to 256 × 256. This increases the
size of the model and impacts training time negatively, but we do this as 256
is a power of 2, which aligns well with the convolution layer architectures that
use strides and pooling. Additionally, increasing the size of the input gives the
model a large canvas to learn and enhance fine details. If we were to change the
size of the slices to align with a power of 2, then the closest options available
would be to downscale to 128×128, which would limit the canvas, or to upscale
to 512 × 512, which would not run properly with our model on our hardware.

We then applied a series of augmentation steps. Each slice would have a
50% chance of being flipped horizontally, a 50% chance of vertical flipping, and
a 50% chance to rotate by either 90°, 180°, or 270°(selected randomly). These
probabilities are independent of each other. Augmentation empirically improves
model performance on unseen data as models are trained to recognise the same
object under different transformations, and real-world images are also likely to
appear in different orientations.
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Finally, we shuffle the training dataset to prevent the model from learning
any sequence patterns, leaving us with a training dataset with approximately
168885 slices of 256× 256 images, and validation and test sets of approximately
14850 and 14715.

3.4.3 Pre-training Phase

GAN training is difficult as the generator and discriminator converge at different
speeds, with the discriminator normally converging faster. If the discriminator
becomes too accurate and overpowers the generator, then it assigns a near-zero
score to all fake images, making the generator loss flat and gradients disap-
pear. Without gradients, the generator can’t improve while the discriminator
continues to improve, meaning that any future change the generator makes is
easily classified by the discriminator and reverted, effectively stalling the entire
learning process (Ham et al., 2020).

To remedy this, we pre-trained the generator using pixel loss for several
epochs before starting adversarial training. If the generator can perform rela-
tively well before the discriminator sees the images, this helps the discriminator
to focus more on texture discrimination, because most other structural aspects
of the super-resolved image are already resolved well. Pre-training is designed to
let the generator learn most of the super-resolution process, whilst adversarial
training can be thought of as fine-tuning. This approach is also used by Wang
et al. (2018) in the original ESRGAN paper, indicating its applicability.

To pre-train, we use the Adam optimiser with β1 = 0.9, β2 = 0.999, and
an initial learning rate of η = 1 × 10−4, following Wang et al. (2018). We
then performed training over either 3 or 4 epochs depending on the size of the
dataset, waiting until the MAE loss was stagnant for 2 epochs before performing
a visual sense check by running the model on a subset of LR slices and moving
onto discriminator training. This same loop is also used to train our FSRCNN
model.

3.4.4 Adversarial Training

After pre-training, we perform adversarial training using the same Adam op-
timiser for generator optimisation and an identical Adam optimiser for the
discriminator. For each epoch, we first train the discriminator by generating
a set of fake SR data using the generator, using Ldisc in Section 3.3 to update
the discriminator weights. We then run the updated discriminator on the SR
data to generate a set of predictions to be used in Ladv alongside any other loss
functions mentioned in Section 3.3 to form the composite loss function Lgen.
We then compute the gradients using Lgen and update the generator weights
accordingly. We run the adversarial loop for 20 epochs with an early stopping
criterion based on SSIM with a patience of 10 epochs.

3.5 Evaluation Procedure

To evaluate model performance, we use standard methods such as Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Per-
ceptual Image Patch Similarity (LPIPS) to evaluate visual similarity of the
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reconstruction. We also employ custom methods to quantify the reconstruction
of matter and tumour regions using pre-trained models. Tests are run each
epoch on the validation set for tuning, and once on the unseen test set for final
evaluation. Our preference would have been to use k-fold cross-validation to use
the entire dataset for both training and evaluation, but this was not possible
due to time and resource constraints.

3.5.1 PSNR

PSNR is a metric designed to quantify the quality of a reconstructed image com-
pared to a reference image in terms of pixel-level difference. This is calculated
using the following:

PSNR = 10 · log10

(
MAX2

MSE

)
� MAX: Maximum pixel magnitude.

� MSE: Mean Squared Error between the original and the reconstructed
image.

Generally, a higher PSNR (30dB+) indicates a better reconstructed image, but
PSNR relies on the numerical difference between two images, not taking into
account human perception. For example, all images in Figure 3.34 have the
same MSE score and therefore same PSNR, but some are far more legible than
others due to human perception. For example, sparse spikes of noise with high
magnitudes (f) make for a far clearer image than a blurring effect (c).

Figure 3.34: Comparison of “Boat” images with different types of distortions,
all with MSE = 210. (a) Original image (8 bits/pixel; cropped from 512Ö512
to 256Ö256 for visibility); (b) Contrast stretched image, MSSIM = 0.9168; (c)
Mean-shifted image, MSSIM = 0.9900; (d) JPEG compressed image, MSSIM
= 0.6949; (e) Blurred image, MSSIM = 0.7052; (f) Salt-pepper impulsive noise
contaminated image, MSSIM = 0.7748. Taken from Wang et al. (2004).

In an MRI scan, we would prioritise the reconstruction of lesions and matter
boundaries, as well as certain textures for diagnostic purposes. PSNR has the
potential to fall short by giving a high score to blurry images without clear lesion
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boundaries but similar overall pixel intensity. These pitfalls do not invalidate
the PSNR metric, as it can still be used as a baseline for initial comparison
and is widely used, allowing us to compare our results to other works, but it is
important to be aware of these limitations.

3.5.2 SSIM

A method that attempts to overcome the limitations of PSNR is SSIM, which
compares a reconstructed image y and reference image x based on three factors
that are important for human perception: luminance l, contrast c, and structure
s. The structural aspect is especially important as human perception can easily
compensate for non-structural distortions.

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y)

The luminance comparison is calculated using the mean intensities for x and y
(µx and µy) and a constant c1:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1

The contrast comparison is calculated using the standard deviations for x and
y (σx and σy) and a constant c2:

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2

The structure comparison is calculated using the covariance between x and y
(σxy) and another constant c3:

s(x, y) =
σxy + c3
σxσy + c3

The SSIM is computed for each location using a sliding window, where the final
SSIM score is equal to the mean of all local SSIM values. If the two images have
similar brightness, contrast, and structure, then SSIM approaches 1. If they
differ significantly then SSIM will approach 0.

SSIM is generally better than PSNR at quantifying blurring levels (Anchuri,
2011) and can quantify noise somewhat better (Wang and Bovik, 2009). We
directly degrade the HR image with noise and blurring, so we expect the
super-resolution process to reduce both, making SSIM a suitable evaluation
metric. These factors along with the structural quantification make SSIM a
better approach for measuring clinically useful reconstructions, as inaccurate
anatomical boundaries are more heavily penalised in SSIM than PSNR.

One drawback of SSIM is that it performs poorly when the mean intensity
µ or variance σ is close to zero, which is common in MRI background regions,
leading to unstable SSIM measurements. Additionally, when µ or σ is too
high, distortions are ignored. Even though SSIM is better at capturing edge
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similarity, when it computes the similarity around each pixel, the window it
uses includes both the edge and surrounding similar areas. This means that if
a surrounding region is very similar, the SSIM score for pixels near the edge
gets pulled up, falsely suggesting high similarity even if the edge is poorly
reconstructed (Pambrun and Noumeir, 2015).

3.5.3 LPIPS

LPIPS is a metric designed to align closer to human perceptual quality than both
SSIM and PSNR by comparing the similarity of deep feature maps generated
using a pre-trained CNN. As LPIPS does not use pixel values directly, instead
using deep features, it is not susceptible to issues caused by high and low µ
or σ values, and can perceive blur and noise much better than PSNR. It also
doesn’t use local windows like SSIM, so it overcomes issues scoring edges close
to similar regions (Zhang et al., 2018).

Figure 3.35 shows how to compute a distance score d0 between two images
x and x0, given a pre-trained CNN F . In our evaluation, we use AlexNet as our
pre-trained CNN.

Figure 3.35: Computing distance from a network, taken from Zhang et al. (2018).

In the context of MRI comparison, LPIPS has the ability to provide a better
metric to measure high-level structural and textural differences as opposed to
pixel-level errors calculated using SSIM and PSNR, meaning that it could lead
to scores that align closer to clinical relevance. However, LPIPS is not fine-
tuned on MRI data, and as such has no specific anatomical knowledge. This
means that the deep features do not align exactly with clinically meaningful
variations. Overall, PSNR, SSIM, and LPIPS are useful in combination with
each other to build a combined view on what areas of the reconstruction are
similar.

3.5.4 Brain Tumour Segmentation

We wanted to evaluate the performance of our super-resolution in a clinical ca-
pacity, so we first focused on investigating whether our super-resolution models
can improve the classification of tumour or lesion regions. To do so, we first ran
all three datasets (LR, SR, and HR) through the brain-tumour segmentation
model DeepSeg. We chose to use DeepSeg as it specialises in FLAIR scans, not
requiring multiple modalities to work Zeineldin et al. (2020). Whilst different
pre-trained DeepSeg models exist, we opted for their UNet architecture due to
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its faster prediction time than other variants. DeepSeg generates a map for each
slice containing labels for each voxel:

� 0: Non-Tumour Area

� 1: Tumour

Figure 3.36: Example segmentations from DeepSeg UNet (bottom) compared
with ground truth (middle) Zeineldin et al. (2020).

We compute the Dice coefficient between each set A and the ground truth B,
using the following equation:

Dice(A,B) =
2|A ∩B|
|A| + |B|

Where |A ∩B| represents the number of pixels correctly predicted as a tumour
and |A| and |B| are total predicted and actual tumour pixels. We use the Dice
score as it directly measures the spatial overlap between classes and it also
discounts true negatives (in this case the background) which would inflate the
score. We first run the HR data through LATUPNET to generate a set of
“ground truth” tumour segmentation maps (note that we did not have access
to true ground truth segmentation maps for validation data) which are treated
as B. Then we do the same with both the LR and SR data. This leaves us
with a list of performance scores:

DiceLR DiceSR

We then use the Wilcoxon signed-rank test to check if DiceSR is significantly
better than DiceLR. The Wilcoxon signed-rank test compares two groups to
determine if one tends to have higher values than another. Since the LR and
SR Dice scores are computed from the same slices and ground truths, they form
a paired dataset, making the Wilcoxon test the appropriate choice.

To perform the test, we compute the differences between each pair of Dice
scores (DiceSR −DiceLR), discard any zero differences, and rank the absolute
values of the differences, with each rank still retaining its sign of the original
difference. We then sum the negative and positive signed ranks separately into
W− and W+, where the test statistic W is the lower value. The significance can
be determined using this W value and a reference table.
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We use Wilcoxon signed-rank as it does not assume that either set are
normally distributed, which is safer as we expect our Dice scores to cluster
near 1.0 for good models but might be more spread out for worse ones. It also
provides an answer to our investigation as to whether our model can improve the
classification of tumour regions by telling us if inputs enhanced by our model
tend to have more accurate maps than unenhanced input. The experiment
runs as a spiritual alternative to an expert score, where DeepSeg acts as a
proxy for clinical assessment and is assumed to be reliable at producing tumour
segmentations.

3.5.5 Brain Matter Segmentation

The second way we measure the clinical performance of our models is by mea-
suring how well anatomical matter is mapped. We do so in a similar fashion
to Section 3.5.4 by running LR, SR, and HR sets through the segmentation
model FSL-FAST. We chose FSL-FAST as it is widely used in clinical and
research settings, with the original publication by Zhang et al. (2001) cited over
5800 times in academic literature (as of July 2025). This produces, for each
slice, three binary maps indicating the probability of presence (ranging from
0 − 1) of one of the following specific brain matter types at each voxel:

� White Matter

� Grey Matter

� Cerebrospinal Fluid

Figure 3.37: Image of FSL-FAST output.

Unfortunately, the BraTS dataset does not come with ground truth matter maps
either, so we treat the HR maps as ground truth for the purpose of this method.
For each matter map, we compute the dice scores between LR with reference
to the HR ground truth, and do the same with SR giving us the dice scores:

DiceLR DiceSR

We then use these to compute the Wilcoxon signed-rank, which tells us if using
our super-resolution model produces significantly better matter labels than a
set not using our model.
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3.6 General Methodological Approach

Given our limited resources, we designed experiments under a constrained setup
to identify the solution with best performance. We aimed to learn the following
objectives:

1. Finding the appropriate model architecture and depth to understand the
data without using unnecessary compute.

2. Finding appropriate hyperparameters that maximised performance of the
model.

3. Using a loss function that penalised the most clinically useful factors when
training.

We began with a restricted training dataset size that reduces training time.
Using this subset, we first explore model architectures in two senses: whether
the type of model is useful (i.e. whether a GAN actually improves performance
or if just using CNN would suffice), and what the appropriate model depth is
that balances performance and efficiency. During this, the loss function (set to
a proven standard) is to be kept constant, but hyperparameters for each model
can then be explored. We explore architectures before loss functions because it
is important to verify whether the model has the capacity to learn meaningful
improvements. If it does then the loss function can be thought of as fine-tuning
the model outputs to be more clinically relevant, however loss functions cannot
improve the performance in a meaningful way if the model is too shallow to
capture relevant features in the slices. Once we have explored loss functions,
we can then train any final models on the full dataset, with prior knowledge of
appropriate models, hyperparameters, and loss functions. We acknowledge that
loss functions, models, and hyperparameters are not independent and can affect
each other, but we do not have the time to explore every combination, so we
try to use a logical order.

3.7 Computational Resources

All training and evaluation were conducted on a local machine with the following
specifications:

� CPU: Intel Core i5 4690K

� GPU: NVIDIA RTX 3060 (12GB VRAM)

� RAM: 16GB DDR3

This setup was adequate for the task, however, caused some limitations on model
size and importantly time taken to train due to a small batch size. To run a
single pre-training epoch on the entire dataset takes around 5 hours and around
9 hours per epoch are taken in the main training loop, taking over a week of
continuous training. This is due to the sheer size of the dataset and depth of
the model, as well as the 256 × 256 resolution.
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Chapter 4

Experimentation

Figure 4.1: Experimental Timeline

4.1 Experimental Dataset

As mentioned in Section 3.6, we used a limited dataset for experimental stages.
This was constructed simply by restricting the training dataset size to 10000
slices. We kept the validation set the same size and we also did not feel the need
to use a test split, as our aim was simply to compare configurations relative to
each other, not to generalise performance. A set of 10000 slices took about 1
hour to train a single epoch, making it relatively time efficient to train.

4.2 Model Architecture Exploration

To explore model architecture depth, we started off using a baseline model of
an ESRGAN with 1 RRDB, with a composite loss function set to:

Lgen = 0.3Lpixel +  Lperc + 0.7Ledge + 0.001Ladv
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This model contains the same loss function and model depth used by Ayaz et al.
(2024), making it a good reference point. Our degradation pipeline generates
more artefacts than Ayaz et al. (2024), simulating GRAPPA and Partial Fourier
where they only used a Tukey window, so we assumed that increasing the
model depth might be necessary for the model to gain an understanding of
the artefacts. Therefore, we also ran an experiment with the same model using
3 RRDBs to test this hypothesis. Additionally, we wanted to verify if a GAN
improved performance significantly compared to its simpler counterpart, the
CNN. If the CNN generates similar performance to a GAN, then the extra
computation cost and training time is not justified, so we ran an experiment
using FSRCNN.

Model PSNR SSIM LPIPS
ESRGAN 1 RRDB 39.823 0.952 ± 0.132 0.046 ± 0.119
ESRGAN 3 RRDB 40.794 0.951 ± 0.129 0.055 ± 0.110
FSRCNN 36.26 0.945 ± 0.124 0.072 ± 0.111

The ESRGAN-based models outperformed the FSRCNN model in all metrics,
which shows that the pixel-level similarity, structural similarity, and perceptual
similarity was higher for ESRGAN-based models. Between the two ESRGAN
models, the 1-RRDB ESRGAN did generate slightly higher perceptual similar-
ity. This indicates that details like edge similarity and texture similarity were
higher for a lower RRDB depth. However, the SSIM was similar throughout
for different RRDBs and the 3-RRDB ESRGAN scored a higher PSNR. From
this data, we took that the ESRGAN is a stronger candidate for this task than
FSRCNN. The results suggest that the image generated 3-RRDB model was
smoother and has sharper textures or edges that resemble human perception
more closely than the 1-RRDB model. However, these figures are limited as we
only look at the model after 5 epochs of full training, meaning that it is possible
and likely that the models learn at different rates and reach different minima at
this point in time, where later on, one model might outperform another.

When training the ESRGAN, we did use 3 pre-training epochs with L1
(pixel) loss to stop the discriminator overpowering the generator immediately
(Figure 4.2). We observed a good training curve for both ESRGAN setups using
the following hyperparameters:

Hyperparameter Value
Batch size 4
Learning rate 1 × 10−4

Generator Optimizer Adam (β1 = 0.9, β2 = 0.999)
Discriminator Optimizer Adam (β1 = 0.9, β2 = 0.999)
Pre-training epochs 3
Training epochs 5
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Figure 4.2: Generator loss over 3 pre-train epochs.

A batch size of 4 was chosen as this was the largest possible batch size that
could fit into VRAM, all other hyperparameters followed Ayaz et al. (2024).
Unfortunately, neither generator nor discriminator loss directly correlate with
image quality, so instead we observe the PSNR and SSIM for the training and
validation set over epochs to check for overfitting and underfitting, which is not
observed as they roughly track each other (Figure 4.3).

Figure 4.3: Training and validation PSNR and SSIM over epochs.

PSNR and SSIM remain roughly the same values over the 5 epochs of the main
training loop, but when observing a slice, we still see qualitative improvements
even when the metrics show no meaningful change.
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Figure 4.4: Evolution of slice super-resolution over epochs for 3 RRDB ESRGAN
model.

For FSRCNN we found that the optimal combination of hyperparameters were:

Hyperparameter Value
Batch size 4
Learning rate 1 × 10−4

Optimizer Adam
Training epochs 5

Overall, we noticed that the main difference was that the 3 RRDB model
appeared to be able to better discern and remove artefacts introduced from
the degradation pipeline as the depth likely enabled it to understand typical
matter patterns and abnormality (likely accounting for the higher PSNR but
lower LPIPS). A good example is shown below in Figure 4.5, which shows the 3
RRDB model eliminating dark spots created by ringing artefacts. Additionally,
FSRCNN generated blurrier images than both, indicating the need for a GAN
model. As we felt that the extra model depth helped the ESRGAN better
distinguish between artefacts and signal, we decided to focus on the 3 RRDB
model for further experimentation.

Figure 4.5: Side-by-side comparison of same slices super-resolved using
FSRCNN, ESRGAN (1 RRDB), and ESRGAN (3 RRDB).
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4.3 Loss Function Exploration

To gain a better understanding on what visual effect each loss function had when
training, we decided to train our best performing architecture (ESRGAN with
3 RRDBs) over 5 epochs using each loss function in isolation with adversarial
loss. We chose a small epoch number as this step was designed to help us
understand what each loss function optimised, which is only used to decide which
loss functions to use in a composite loss function, only intending to use these
models as an informational stepping stone. As we already determined viable
hyperparameters for the 3 RRDB ESRGAN, we used the same hyperparameters
as in Section 4.2. Additionally, we kept the same 3 pre-training epochs as in
Section 4.2.

Loss PSNR SSIM LPIPS
Pixel 42.354 0.956 ± 0.126 0.044 ± 0.111
Perceptual 40.808 0.952 ± 0.132 0.049 ± 0.108
Edge 38.122 0.941 ± 0.140 0.064 ± 0.118
Fourier 38.409 0.936 ± 0.153 0.063 ± 0.116
Style 39.238 0.943 ± 0.118 0.047 ± 0.107

Table 4.1: Performance metrics for different loss functions across 5 epochs on a
3300-slice validation set.

Figure 4.6: Comparison of image output after training on single loss functions.

4.3.1 Pixel Loss

Training a model using purely pixel loss for 5 epochs after pre-training returned
the highest SSIM and lowest LPIPS, suggesting that the image generated by
this loss function is perceptually the closest to HR than all the other loss
functions by itself, returning the sharpest edges and textures. It also received
the highest PSNR, suggesting that the overall noise was relatively low and the
basic structures were well preserved.

In practice, we observed that it returned a surprising level of accuracy in
the texture boundaries such as the edge of the brain and empty space, or on
lesion boundaries. As is expected over 5 epochs, detail in texture was lacking and
regions that were heavily obscured by ringing and blurring were not recoverable,
though this was also true for most other loss functions. We generally saw
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that ringing artefacts were reduced, however some strong ringing artefacts are
perceived as edges (Figure 4.7).

Figure 4.7: Imagined edges due to ringing artefacts.

Generally, pixel loss seemed to perform better on white matter than grey matter,
struggling somewhat on central areas of the brain which contained a high
amount of detail (and artefacts as a consequence).

Figure 4.8: MAE map between SR and HR slice.

It is worth noting that the pre-training was done using L1 (pixel) loss, so its
strong performance in terms of edges compared to other loss functions might
be because the other loss functions are undoing the work of pixel loss in their 5
post-pre-training epochs and so are further back in the training process resulting
in an averaging effect whilst this model does not have to re-learn anything.
Overall, the pixel loss performance was relatively strong at defining strong edge
boundaries, but was affected by artefacts.

4.3.2 Perceptual Loss

Perceptual loss contained a relatively high SSIM, but a lower LPIPS than pure
pixel loss, suggesting that the images generated had similar structural features,
but some of the textures are not as accurate. It also contained the second
highest PSNR, just behind pixel loss, suggesting that in general, the uniform
noise was low and basic structures are similar.
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Generally, we observed a similar behaviour from pixel loss and perceptual
loss across 5 epochs, with perceptual loss returning slightly less sharp images.
We did observe that perceptual loss had a slightly higher sensitivity to both
edges and artefacts, meaning that we often saw light residual ringing artefacts
that were present in LR but not HR, and some more detailed textures, both of
which were not present in the pixel loss model. However, most borders appeared
blurrier than pixel loss. Similarly, regions with heavy blur and artefacts were
not recoverable.

Figure 4.9: Unrecoverable detail (left) and residual ringing artefacts which are
not present in pixel loss (right).

Perceptual loss seemed to perform better on white matter than grey matter,
and struggled in central areas with lots of detail, much like pixel loss.

Figure 4.10: MAE map between SR and HR slice.
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Overall, we saw similar performance positive performance from perceptual loss
to pixel loss, with a slight underperformance. However, over more epochs
perceptual loss functions tend to outperform pure L1 pixel loss in GANs (Ledig
et al., 2017).

4.3.3 Edge Loss

While perceptual loss and pixel loss perform similarly, edge loss is designed to
prioritise penalising inaccurate edges. We saw that this impacted the SSIM,
PSNR, and LPIPS negatively, receiving the lowest PSNR and worst LPIPS. To
some extent this was expected, as prioritising edges would not create a balanced
final image, so its human perception would be worse. As the loss function does
not attempt to penalise each aspect of the image in a balanced manner, we also
were not expecting the pixel-level difference to be low. We were more interested
in the visual effects of this loss function.

The main difference that this loss function made visually was that it ampli-
fied edge structures. This is both useful in the sense that matter boundaries
were far clearer, but as the LR image was riddled with ringing artefacts, it also
amplified these to a larger extent than the perceptual loss did.

Figure 4.11: Amplification of ringing issues caused by edge loss.

The amplification of the ringing artefacts can also be seen in Figure 4.11:
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Figure 4.12: MAE map between SR and HR slice.

Ayaz et al. (2024) previously used a composite loss function with edge loss
successfully, but their dataset had far less intense artefacts than ours. Never-
theless, we decided that it was worth exploring edge loss further in a composite
loss function due to its evidence of past success; we also wanted to see if we
could find a loss function that highlights edges and doesn’t amplify artefacts as
much.

4.3.4 Fourier Loss

One alternative loss function that we devised was Fourier loss. This was brought
in to try and perform the same edge amplification as edge loss without the
artefacts. As they perform a similar function, the PSNR and LPIPS scores are
comparable, with the SSIM being slightly lower than edge loss.

Visually, Fourier loss is effective at preserving edges on the outside boundary
of the brain but does smooth all textures creating a flat image with little texture.
This creates an image where the main structural features and low-frequency
content are kept, but finer details are removed. Importantly, Fourier loss is
resilient to ringing artefacts, with a lack of overall texture as a trade-off.
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Figure 4.13: Lack of texture and artefacts caused by Fourier loss.

We see in the MAE map that Fourier loss tends to operate similar to pixel and
perceptual loss, but any textures are highlighted as Fourier loss smooths them
out, creating a difference between SR and HR:

Figure 4.14: MAE map between SR and HR slice.

Overall, we thought that this type of loss would be worth further testing in
our composite loss function as it acts in a similar way to edge loss, which has
evidence of performing well in a composite loss function, without the drawback
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of amplifying artefacts.

4.3.5 Style Loss

We wanted to see if 1.5T to 3T super-resolution could be thought of as a style
transfer, for this purpose we tested style loss. On metrics alone, style loss
achieves an LPIPS score that was far better than expected, with an SSIM and
PSNR slightly above edge loss. The LPIPS score suggests that the images
generated look visually similar under a human perception. However, we noticed
that using style loss produces images that contain relatively realistic textures
and strong boundaries, but these boundaries appeared to be far more inaccurate
than any of the other loss functions. Often the shape of the edges was distorted
and different shapes were created in the SR version that were not similar to
either LR or HR.

Figure 4.15: Lack of texture and artefacts caused by Fourier loss.

We opted not to use this loss function, despite its relatively high metrics, as we
worried that the images produced would have distorted edges and boundaries,
which would be more clinically risky in areas such as tumour detection and
segmentation than inaccurate textures.

4.3.6 Preliminary Composite Loss

Using the information gathered from our loss function experimentation, we
decided to experiment with two composite loss functions on the same 3-RRDB
ESRGAN model. We used the same 3 pre-training epochs and the same hy-
perparameters as the previous section, also training for 5 full epochs after pre-
training. The purpose of this stage was to verify that these composite loss
functions are working before we dedicate time to train on the full dataset. The
first loss function that we trained with was the same as Ayaz et al. (2024), which
we chose as we had some evidence demonstrating its applicability:

Lgen = 0.3Lpixel + 1Lperc + 0.7Ledge
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We had already checked this composite loss function in Section 4.2, as such, we
did not need to repeat the experiment.

The second composite loss function that we trained aimed to swap the edge
loss component from Ayaz et al. (2024) with Fourier loss to reduce the impact
of ringing artefacts:

Lgen = 0.3Lpixel + 1Lperc + 0.0001Lfourier

Fourier loss contains a much higher magnitude than edge, pixel, and perceptual
loss, hence the weighting needed to be adjusted to λ4 = 0.0001. We were able to
calibrate this using first-pass magnitudes of the first 1000 slices in the dataset.
First we observed the magnitude of Fourier loss at λ4 = 1 when compared to
the first composite loss function (including edge loss), we were then able to scale
λ4 down to a similar magnitude to Ledge.

Figure 4.16: Loss magnitudes across the first 1000 slices after a single pass at
λ4 = 1 (top) and λ4 = 0.0001 (bottom).

Note that the Fourier loss magnitude is higher on the first pass but scales down
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to match Ledge after gradients are adjusted. We aimed for a λ4 that matches
the magnitude during training:

Figure 4.17: Loss magnitudes during training with edge loss (top) and Fourier
loss (bottom).

Using these two loss functions over 5 full training epochs we were able to get
these preliminary results:

Model PSNR SSIM LPIPS
Edge 40.794 0.951 ± 0.129 0.055 ± 0.110

Fourier 39.592 0.951 ± 0.132 0.055 ± 0.055

These indicate to us that our composite losses performed comparatively to each
other and the individual loss functions, warranting a training run on the full
dataset.
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Chapter 5

Final Model Evaluation

5.1 Training

We trained both models with the same hyperparameters as in Section 4.5, but
with 20 full training epochs instead of 5.

Hyperparameter Value
Batch size 4
Learning rate 1 × 10−4

Generator Optimizer Adam (β1 = 0.9, β2 = 0.999)
Discriminator Optimizer Adam (β1 = 0.9, β2 = 0.999)
Pre-training Epochs 3
Training Epochs 20
Early stopping patience 10

Following the results from Section 4.3.6, we decided to explore both loss func-
tions:

� Lgen = 0.3Lpixel + 1Lperc + 0.7Ledge

� Lgen = 0.3Lpixel + 1Lperc + 0.0001Lfourier

The training process for each used a training set of around 168885 slices, taking
around 9 hours per epoch. After pre-training each model took around 180 hours
to train the full model. For both ESRGANs we observed that the generator and
discriminator losses were balanced over the 20 epochs (Figure 5.1), indicating
that adversarial training was steady.
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Figure 5.1: Training and validation loss for ESRGAN 1 (above) and ESRGAN
2 (below).

For ESRGAN 1, while SSIM and PSNR values fluctuated in the training set, we
saw that they increased slowly over the epochs, though not by much. As SSIM
and PSNR were already high after pre-training (around 0.97 and 36 respectively
in the validation set), we did not expect much increase, as most of the changes
that the GAN would be making would be very fine textural and structural
changes which may not be reflected in PSNR or SSIM. This can be seen in
Figure 5.2:
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Figure 5.2: ESRGAN 1 PSNR (above) and SSIM (below) during training.

For ESRGAN 2, we saw similar results with the validation PSNR and SSIM
also slightly improving, but overall the validation and training metrics staying
balanced with each other. This shows a relatively healthy training process
for both ESRGANs, as a higher training SSIM or PSNR would indicate an
overfitting model. This can be seen in Figure 5.3:
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Figure 5.3: ESRGAN 2 PSNR (above) and SSIM (below) during training.

5.2 Quantitative Results

To perform a quantitative evaluation on both ESRGANs we conducted PSNR,
SSIM, and LPIPS evaluation on an unseen test set (different to that which was
used in Section 4) to compare the pixel-wise, and perceptual similarity between
the generated SR images and the HR images. We then performed matter and
tumour segmentation evaluations mentioned in Section 3.5.5 and 3.5.4.

5.2.1 Image Quality Metrics

Model PSNR SSIM LPIPS
ESRGAN 1 39.096 0.961 ± 0.101 0.032 ± 0.069
ESRGAN 2 38.559 0.959 ± 0.109 0.034 ± 0.085

Using edge loss as opposed to Fourier loss resulted in slightly higher PSNR,
SSIM and LPIPS scores, though differences were extremely similar on both
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SSIM and LPIPS scores. The use of edge loss creates images that are slightly
closer to the ground truth in pixel values than Fourier loss. Overall, a human
observer would be unlikely to categorise edge or Fourier loss as visibly worse
in degree when compared to the ground truth set. This is not to say that the
outputs are similar themselves, as it is possible that different visual artefacts
and effects contribute to their similar score.

They did outperform all other models used in Section 4 in LPIPS, and
outperformed all but one model in SSIM score, though these cannot be compared
directly, as models in Section 4 were evaluated using the validation set. Overall,
this indicates that both models produce strong reconstructions of comparable
perceptual quality. The choice between different loss functions must be guided
by other characteristics.

5.2.2 Matter Segmentation

Tissue
LR
Dice

ESRGAN 1
Dice

ESRGAN 2
Dice

p-value

(LR vs ESRGAN 1)

p-value

(LR vs ESRGAN 2)
WM 0.0125 0.6805 0.6745 +1.510× 10−19 +1.389× 10−19

GM 0.4435 0.6548 0.6555 +4.129× 10−13 +1.193× 10−13

CSF 0.0007 0.6926 0.6830 +1.279× 10−19 +1.279× 10−19

We see that both edge and Fourier loss offer similar Dice scores in comparison
to the HR set when segmented using FSL-FAST. ESRGAN 1 does offer slightly
higher Dice scores for CSF and white matter than ESRGAN 2, indicating
that it constructs these tissues more accurately. Overall, enhancing LR using
either ESRGAN before passing through FSL-FAST creates more accurate mat-
ter segmentations compared with the HR set than not using super-resolution.
However, this is purely down to the fact that FSL-FAST performed very badly
on our LR data, struggling to segment LR volumes accurately (Figure 5.4), only
managing to segment grey matter with any sort of accuracy. This limitation
is not necessarily a flaw in our method, as it highlights the potential benefit
of using super-resolution to recover anatomical detail sufficient for standard
clinical tools, though it is also worth noting that our degradation contained
very strong artefacts and blurring. Either way it tells us that for our specific
profile of artefacts, both of our ESRGANs can help clinical software to segment
matter regions.

Dice scores of 0.65–0.69 suggest the model captures some tissue structure but
are likely not useful clinically, where values above 0.80 are typically expected for
reliable WM, GM, and CSF segmentation (Wong et al., 2024). This indicates the
super-resolution improvement does not yet yield accurate enough delineation.
However, it is worth noting that these results compare SR segmentation map
overlap with HR maps, not the ground truth. If the HR maps are not accurate
then the Dice scores may underestimate the true performance of the model,
since errors in the reference segmentations would propagate into the evaluation.
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Figure 5.4: Comparison of FSL-FAST segmentation on LR, SR, and HR sets.

5.2.3 Tumour Segmentation

Model Dice vs HR p-value vs LR
LR 0.5054 N/A
SR - ESRGAN 1 0.8878 1.1429× 10−18

SR - ESRGAN 2 0.8582 1.2713× 10−18

Similar to our matter segmentation results, we see that edge and Fourier loss
provide similar Dice scores when a tumour region is extracted using DeepSeg,
which is significantly higher than the LR segmentation map. We see Dice scores
above the 0.80 threshold indicating that our models yield clinically relevant
tumour delineation, indicating that super-resolution enhancement can improve
segmentation accuracy in downstream tasks. However, these results are limited
by comparison to HR rather than ground truth and by DeepSeg’s binary tumour
masks, which capture only the outer boundary rather than specific subregions.

Figure 5.5: Comparison of DeepSeg segmentation on LR, SR, and HR sets.

5.3 Qualitative Results

While visual quality metrics are useful to evaluate the overall performance
of both models in some regards, we also noticed several patterns that were
demonstrated by models during super-resolution that could not be quantified.
We summarise some of the key visual features in this section. Any images shown
in this section are representative examples of any visual features, not the only
examples of such features occurring.
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Some areas in the HR set have ringing artefacts in their corresponding LR
images, mainly due to proximity to matter boundaries. In an ideal world the
ESRGANs would recognise that these are artefacts and remove them from the
SR images, and we see some degree of that happening in both ESRGANs, but it
is common to see residual patterns appearing in SR images (Figure 5.6 bottom
left).

Both ESRGANs struggled to reconstruct regions heavily affected by blur and
artefacts, particularly where the HR image contained many fine textures in close
proximity, as seen in Figure 5.6 (top right). However, the models did show good
performance on brain surface folds, reconstructing blurry boundaries sharply
and accurately (Figure 5.6 bottom right). We expected this strong performance
as Fourier or edge loss was designed to target these areas and the contrast
difference in LR images is naturally very high, making it easy to locate the
boundary.

Our models appeared to struggle slightly on tumour regions, often hal-
lucinating some ridges and textures, mainly due to ringing artefacts in the
LR image (Figure 5.6 top left). Tumour reconstructions also appeared less
sharp than other areas. We suspected this was because tumour represented a
small proportion of overall training data whilst often containing highly varying
textures.

Figure 5.6: Example slice containing common reconstruction artefacts.

We can see in Figure 5.7 that LR slices containing clear edges and boundaries
with less fine textures are reconstructed exceedingly well by both ESRGAN
models. Both are able to accurately discern between ringing artefacts and true
boundaries, understanding the context enough to enhance the latter and remove
artefacts.
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Figure 5.7: Performance on slices containing a large amount of folds.

Our models seem to struggle exactly replicating fine patterns on slices tending
toward the base of the brain. We can see in Figure 5.8 that there are fine wave-
like textures at the top of the HR image, which still partially exist in the LR
degradation, but our ESRGANs flatten and blur these textures noticeably. In
this example, the ESRGAN with Fourier loss does do a slightly better job at
reconstructing these textures, but both are missing texture. This indicates that
our model does struggle with the level of degradation that we applied to HR,
and, clinically might struggle to recreate textures from artefact-heavy scans in
slices closer to the stem.

Figure 5.8: Failure to replicate textures on lower slices.

Where the HR image contained noticeable visual noise, neither ESRGAN recon-
structs the SR image with as much noise, instead the expected noise is blurred
(Figure 5.9). This can be seen as both a positive and negative, as noise in MRI
images is generally not desirable as it can mask detail, but our SR images can
only contain the level of detail present in the HR image with noise. It is also
likely that the explanation for this is that the degradation pipeline removed the
noise from HR, and our model wasn’t deep enough to understand that it needs
to reconstruct it. Overall, this suggests that our models tend to favour cleaner
reconstructions over faithfully reproducing noise present in the original scans.
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Figure 5.9: Example of lack of noise restoration.

5.4 Robustness to Degradation

Our degradation pipeline contained more artefacts, blurring, and noise than any
other degradation pipeline that we were able to find in literature. In reality,
data is unlikely to be as degraded as ours but we wanted to test our model on a
harsher dataset. However, we also evaluate how our model performs on “easier”
data by focusing on only degrading by each method in isolation.

5.4.1 Cylindrical Low-Pass Filter with Tukey Window in
Isolation

We wanted to test the performance of our model without any sort of parallel
imaging or partial Fourier artefacts as these are not always present. To do this,
we generated a duplicate test set without T2 or T3, leaving only the cylindrical
filter with a Tukey window. This removed most of the ringing artefacts, leaving
a blurred image. We kept the Rician noise as it is inherent to 1.5T scans.

Model PSNR SSIM LPIPS
ESRGAN 1 38.410 0.972 ± 0.073 0.029 ± 0.017
ESRGAN 2 37.295 0.978 ± 0.014 0.032 ± 0.018

When the LR image dataset doesn’t contain GRAPPA or Partial Fourier arte-
facts, both LPIPS and SSIM scores improved, with the PSNR decreasing slightly.
We see a major improvement in SSIM score from ESRGAN 2, which jumps
from 0.959 to 0.978, outperforming ESRGAN 1. This shows that using Fourier
loss with a simpler degradation seems to pick up structural changes effectively,
perhaps more so than edge loss. Using only T1 is actually closer to degradation
simulations used in other studies such as Ayaz et al. (2024), and is likely to be
more visually similar to MRI scans in clinical settings, as we used a very high
level of artefact to simulate our 1.5T scans. That being said, using ESRGAN
1 did create a lower PSNR and slightly higher LPIPS score, indicating that
the pixel-level difference and human perceptual quality differences are slightly
worse.
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Figure 5.10: Outputs of ESRGAN 1 and ESRGAN 2 on slice with only
cylindrical low-pass filter with Tukey window and Rician noise.

Without GRAPPA and Partial Fourier artefacts, SR images from both models
look far closer to HR than using the full degradation pipeline, and both models
are very similar for the most part. Upon visual inspections, we did notice
a number of cases where ESRGAN 2 produced more accurate boundaries than
ESRGAN 1, which had a tendency to erase boundaries if they were small enough
(Figure 5.10).

Overall, both losses perform far better when T2 and T3 are not included,
and we were impressed by the SSIM improvements and accurate border recon-
struction shown by ESRGAN 2. Given that real-world LR images are likely
to resemble this simplified degradation pipeline, our results demonstrate that a
model trained with Fourier loss can be highly effective

5.4.2 GRAPPA Degradation in Isolation

We wanted to test the performance of both ESRGANs using an LR set generated
only using GRAPPA artefacts T2. To do so we did need to reduce the signal
multiplier to α = 15 as the original signal multiplier created reconstruction
lines that were far too intense for the sample k-space, creating unnecessarily
high artefact levels. We achieved the following image quality metrics.

Model PSNR SSIM LPIPS
ESRGAN 1 30.615 0.921 ± 0.095 0.086 ± 0.074
ESRGAN 2 29.913 0.930 ± 0.057 0.077 ± 0.058

These metrics are unusually low for both models, and the primary reason is
that both models created black regions occasionally on the reconstructed im-
ages (Figure 5.11). Excluding these regions, the reconstructions were generally
accurate, although performance with edge loss was noticeably poorer.
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Figure 5.11: Outputs of ESRGAN 1 and ESRGAN 2 on slice with only GRAPPA
simulation and Rician noise.

5.4.3 Partial Fourier Degradation in Isolation

Similar to the previous stages, we wanted to simulate LR using only Partial
Fourier artefacts T3, achieving the following results:

Model PSNR SSIM LPIPS
ESRGAN 1 31.458 0.933 ± 0.088 0.063 ± 0.047
ESRGAN 2 31.544 0.949 ± 0.037 0.062 ± 0.032

We see the same issue as before in Section 5.4.2, where all visual quality metrics
are decreased. This is also due to hallucinated black regions in both ESRGAN,
which are more prevalent when using ESRGAN 1 (Figure 5.12).

Figure 5.12: Outputs of ESRGAN 1 and ESRGAN 2 on slice with only Partial
Fourier simulation and Rician noise.

Overall, this indicates that our models can fail when the LR images contain
artefacts without accompanying blur. While cases like these shouldn’t be com-
mon in typical clinical settings, they highlight a limitation in generalisability
for degradation driven purely by acquisition protocol differences when used on
a model not trained for that specific domain. This means that for images lacking
significant blur, dedicated training with artefact-specific degradations may be
necessary to achieve reliable performance.

5.5 Performance Across Slice Position

We evaluated whether our model performed better on different areas of the
brain, so we averaged SSIM, PSNR, and LPIPS for each axial slice in the dataset.
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As expected, performance was generally consistent across slice positions. We
generally observe the best performance across all metrics in the outer slices
which are closer to the neck and the top of the skull (Figure 5.13). In contrast,
the middle slices showed a noticeable trough in all three metrics. This may
be because these slices tend to cover a larger area, include more edges and
boundaries between different tissue types, and contain a higher frequency of
complex textures.

Figure 5.13: Comparison of ESRGAN 1 and ESRGAN 2 average PSNR, SSIM,
and LPIPS over slices 0-150.
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Chapter 6

Discussion

6.1 Synthesis of Findings

We were able to train both ESRGANs steadily for 20 epochs with balanced
generator and discriminator losses. Given that PSNR and SSIM were already
high after pre-training, improvements were small afterwards, with most changes
being expressed in finer detail as opposed to visual quality metrics. ESRGAN
1 (containing edge loss) yielded a slightly better PSNR and SSIM on the full
degradation LR set, while ESRGAN 2 showed comparable perceptual quality
(LPIPS).

Both models greatly improved FSL-FAST brain matter segmentation Dice
scores compared to LR inputs, but this was mainly down to the LR input
being so degraded that FSL-FAST could not provide any useful segmentation
information. Additionally, the accuracy achieved when compared to the original
HR data segmented using FSL-FAST was not particularly impressive. However,
our models significantly improved performance of DeepSeg’s binary tumour
segmentation models when compared to degraded data, yielding Dice scores
exceeding the 0.8 threshold when compared to HR, indicating a limited clinical
usefulness.

Qualitatively, both models excelled at reconstructing boundaries between
the brain surface and empty space, and performed well where LR contained
simple blur that did not obscure the HR textured to a great extent. Both
models struggled to reconstruct areas where ringing artefacts heavily obscured
regions, tumours, and complicated textures. Fine detail reproduction in lower
brain slices was also weaker than central slices.

When the degradation intensity was reduced, we found strong performance
on simple blur and noise degradations, particularly for ESRGAN 2. Both models
exhibited poorer performance on degradation with only GRAPPA and Partial
Fourier artefacts without blurring, producing black-region artefacts and large
metric drops. This problem was more extreme with ESRGAN 1.

6.2 Contextualisation in Literature

Before comparing our results with any from previous literature, it is worth
noting that we use a highly unique method of degradation, producing more
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complex and a higher level of artefacts than any other works to the best of our
knowledge.

We first compare our results with Ayaz et al. (2024), who use the Human
Connectome Project dataset as opposed to BraTS for training, with a signif-
icantly smaller training set (30 vs our 1251 volumes). They use a test set
containing volumes from HCP, OASIS, and MRBrainS18, containing 17 vs our
109 volumes, giving our set more diversity. Whilst our degradation pipeline
consisted of three steps to produce LR, theirs only contained the initial Tukey
window filter step, making the resulting image far less artefact-heavy. Their
model was also designed to be executed on smaller 64 × 64 patches rather than
ours which operates on entire slices. Based on these reasons, we estimated that
our results would be worse, but it would be difficult to quantify enough to
perform a direct comparison.

Model Dataset PSNR SSIM

ESRGAN 1 BraTS 2024 - BraSyn T1, T2, T3 39.096 0.961 ± 0.101
ESRGAN 2 BraTS 2024 - BraSyn T1, T2, T3 38.559 0.959 ± 0.109
ESRGAN 1 BraTS 2024 - BraSyn T1 38.410 0.972 ± 0.073
ESRGAN 2 BraTS 2024 - BraSyn T1 37.295 0.978 ± 0.014
FSRCNN HCP+OASIS+MRBrainS18 39.27 0.991 ± 0.0004
RRDB HCP+OASIS+MRBrainS18 43.21 0.995 ± 0.0002
DeepUResnet HCP+OASIS+MRBrainS18 38.58 0.987 ± 0.0006
ESRGAN HCP+OASIS+MRBrainS18 40.08 0.992 ± 0.0004

As expected our models performed worse in SSIM and PSNR values than theirs,
but results were within the same ballpark, suggesting that the performance is
somewhat comparable.

A systematic review by Muhammad et al. (2024) details the performance
of different MRI super-resolution models on their respective datasets. The
degradation for these images is simply downscaling spatial resolution by either
×2, ×3, or ×4, which is very different to our methods. We focus on models in
the review which are trained on the BraTS 2019, 2018, 2017, and 2015 datasets
with a ×2 super-resolution, as these are likely to be the most similar in terms
of dataset content and degradation level.

Model Dataset PSNR SSIM

ESRGAN 1 BraTS 2024 - BraSyn T1, T2, T3 39.096 0.961± 0.101
ESRGAN 2 BraTS 2024 - BraSyn T1, T2, T3 38.559 0.959± 0.109
ESRGAN 1 BraTS 2024 - BraSyn T1 38.410 0.972± 0.073
ESRGAN 2 BraTS 2024 - BraSyn T1 37.295 0.978± 0.014
MDGUN (Yang et al., 2022) BraTS 2019 35.969 0.9703
MS-GAN (Zhu et al., 2019) BraTS 2019 27.90 0.8300
Andrew et al. (2021) BraTS 2017 29.023 0.8840
SwinMR (Huang et al., 2022) BraTS 2017 32.07 0.9450
FSCWN (Shi et al., 2019) BraTS 2015 36.53 0.9583
CDSR (Wang et al., 2019) BraTS 2015 39.84 0.9904
MFER (Li et al., 2023) BraTS 2015 40.44 0.9897

Again, direct comparison is not possible, but we see that our models do have
similar performance to other solutions.
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6.3 Practical Implications

Overall, both ESRGANs have demonstrated a relatively competitive level of
performance in line with other GAN MRI super-resolution models. This means
that medical facilities in areas like Sub-Saharan Africa with older 1.5T scanners
which contain artefacts and blurring could theoretically make use of our GAN
to achieve 3T-like image quality for enhanced lesion clarity and diagnosis. Our
super-resolution models have demonstrated some ability to improve automated
tumour segmentation (at least to a similar quality to 3T data), though did not
demonstrate impressive improvement in automated matter segmentation. This
means that while super-resolution may help improve downstream tasks that
rely on clear lesion boundaries, such as tumour detection, it is less likely to
meaningfully enhance tasks that depend on accurate tissue differentiation, like
WM, GM, and CSF segmentation.

However, we recommend using with caution as our models can hallucinate
some edges when ringing artefacts are heavily obscuring edges, and tumour
reconstructions are not always as sharp as other enhancements. These factors
can lead to incorrect boundaries being visualised, which means that tumour
areas may not be accurately mapped in diagnostic situations. Additionally,
heavy ringing can cause residual texture effects, meaning that fine textures
can be imagined incorrectly by our models, which could mislead radiologists or
automated segmentation systems that rely on subtle texture for assessment. It
is also important to understand that texture reconstruction appears to be worse
in several cases on outer slices, though the PSNR, SSIM, and LPIPS on average
is higher, so any strange matter or textures found in outer slices shouldn’t be
taken as gospel and must be subject to further review.

Importantly, our models appear to require a certain level of blurring to avoid
black regions in the reconstructed images, these should naturally be present in
1.5T scans but it is important to ensure that any input 1.5T images match this
level. These effects are unlikely to mislead radiologists as they are immediately
obvious upon inspection. In this scenario, we recommend altering the radius of
the low-pass filter to match levels of blur of input images, and removing T2 or
T3 if these artefacts aren’t present in real-life input images. Using this, a new
simulated training dataset can be generated and our models can be retrained.

6.4 Future Work

This project was conducted over a period of around 4 months, but as we were
operating using limited hardware, each training run took a substantial amount
of time. As such, we did not implement all potential ideas.

6.4.1 Dataset

One simple implementation that we would have experimented with splitting the
training dataset into one main subset and two comparatively smaller subsets.
The primary subset would be degraded using only the low-pass filter T1, while
the smaller subsets would be degraded using T1 combined with T2, and T1
combined with T3, respectively. This is because 1.5T scans are not guaranteed
to contain either T2 or T3 artefacts. We expect that this would solve black region
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issues mentioned in Sections 5.4.2 and 5.4.3. This was not done earlier due to
time constraints.

6.4.2 Loss Functions

We had several drop-in replacement ideas for the perceptual loss function Lperc,
which passed the SR and HR sets into the VGG19 CNN, using the MAE
as the loss score. VGG19 is trained using the ImageNet dataset (Simonyan
and Zisserman, 2015), which contains images not focused on the MRI domain.
While the ImageNet weights do transfer well onto many other problems, it is
worth investigating whether fine-tuning VGG19 on an MRI dataset may help
the perceptual loss function prioritise features specific to MRI images.

In a similar vein, a theoretical segmentation loss function could be used to
penalise large differences in matter type (WM, GM, and CSF) or tumour type
by using feature maps from CNN-based MRI segmentation models. This can
work in a similar way to Lperc using MAE. This type of loss function could
be used as a drop-in replacement for Lperc or added alongside others in the
composite loss function. The hope is for the generator to preserve anatomically
meaningful structures and tissue boundaries.

6.4.3 Evaluation

Unfortunately, each epoch took around 9 hours using our training dataset,
taking about a week to train. This meant that k-fold cross validation was
out of the scope as it would take k times this amount of time. Using k-fold
cross validation would allow us to train our models on the entire dataset and
evaluate based on the entire dataset, giving us a model exposed to more data,
which could generalise better as a result, and an evaluation using significantly
more data, allowing for a more accurate assessment of model performance, with
reduced bias from any particular train/test split.

Additionally, the matter segmentation evaluation (Section 5.2.2) was unusu-
ally poor at segmenting our LR slices, skewing Dice scores to favour our SR set.
With more time, we could evaluate using multiple brain-matter segmentation
models in addition to FSL-FAST, helping us build a more holistic evaluation.

6.4.4 Architecture Improvements

As mentioned briefly in the background, MRI data is inherently 3D. Therefore, a
3D super-resolution should theoretically be able to produce higher reconstruc-
tion performance by using inter-slice relationships. Our model could replace
convolution, batch normalisation, and other layers with 3D variants, adapting
the model to use an entire MRI volume as input. This obviously makes the
model far larger, meaning that a single pass takes up more VRAM than a 3D
model. Unfortunately, we were not able to use any of these approaches due to
VRAM limitations.
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Chapter 7

Reflection

I began this task with absolutely no knowledge of MRI physics. As such, even
simple concepts such as 1.5T and 3T magnetic field strength were outside of
my domain. Naturally I understood that some level of research was needed
to understand the task, however I was not aware of how complex it would be
to simply understand how a scan works. Initially, I imagined that simulating
acquisition artefacts would simply boil down to blurring images and adding
noise, but I soon became aware of the concept of k-space, which I was not
able to understand conceptually, spurring me to dive into a week-long period
dedicated to understanding MRI acquisition physics. This personal research was
invaluable, not only helping me understand why prior works used certain steps
in their degradation pipelines, but also allowing me to justify design choices for
my own degradation pipeline, something that would never have been possible
without domain knowledge. However, the field is still relatively new to me,
and decisions are likely reflective of some naivety. I noticed that while I can
understand details very well, sometimes I lose the bigger picture. For example,
once I gained some in-depth MRI physics knowledge, I felt the need to apply
every detail into my degradation pipeline without as much consideration into
whether it would make the final image resemble 1.5T more. In reality, it
is likely that including GRAPPA and Partial Fourier artefact simulation was
unnecessary and a simpler approach using a low-pass filter in isolation would
have yielded more realistic 1.5T simulation. But once I learned how GRAPPA
and Partial Fourier worked I was far too eager to add them in without proper
justification as to whether they were needed. In the future, I recognise that
learning technical details is important, but it is equally important to critically
assess their relevance to the overall project.

Most of the limitations in this project were caused by a lack of time as
training took so long. Before taking this project, I had undertaken some
small-scale machine learning projects, however the scale of this project was
more complex and required far more experimentation and research than other
projects. I also had no experience using GANs, or the field of super-resolution.
As such, I was not prepared for how long training loops would take to complete,
or how much hyperparameter tuning would be needed. On top of this, a lot of
my time was spent monitoring the training and doing nothing simultaneously,
wasting some time in the initial stages of the project. Towards project’s tail-end,
I had a number of personal commitments, triggering me to create a schedule
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midway through. Taking into account training time for our models and report-
writing, I found out that I had less time than I initially imagined. This led
me to start writing my report and monitoring training simultaneously, which if
done earlier would have saved time significantly and potentially have alleviated
some of the limitations caused by time constraints. While I don’t think that
my time management was bad, as I correctly scheduled this project to be done
within the deadline, next time I would improve it by considering multitasking
and my knowledge of GAN training time from the beginning.

Approaching this task, I did not consider that the size of the BraTS dataset
would affect the project in as significant of a way as it ended up doing. Early
on, I decided that I wanted to give my models as much data variety as possible,
which led me to use as large of a dataset as reasonably possible. Other models in
the literature used far fewer volumes (such as Ayaz et al. (2024) using 60 scans)
that intuitively did not seem like enough for the task. However, whether using a
very large training dataset led to a true benefit was difficult to prove definitively
and still is unclear. Ironically, I might have done more experimentation to
prove this if I restricted the training dataset size and iteratively added more
data whilst keeping the maximum validation set size, but this did not happen
as I spent most of my time training my models on the full training dataset.
Additionally, if I had not rushed into the assumption that I would use all slices
from all volumes I could have investigated if training with a random subset of
slices from each volume produced a similar performance. This is mainly an issue
due to my time constraints, optimising for time could have potentially led to a
better solution. Ultimately, it is unlikely that using more BraTS data harmed
my project directly and it is possible that it helped, but the issue was that I
hadn’t fully investigated the effects. Moving forward I would spend more time
investigating the benefit of dataset size.

All else equal, I believe that I conducted the research and task to a high
standard. While the evaluation data demonstrates the quality of my results,
the topics and skills I learned evidence the thoroughness of my research process.
Although CMT311 and my own personal projects gave me a strong foundation in
CNN architectures, training, and the mathematics underlying machine learning,
I had no prior understanding of GANs. However, by the end of the project I
felt confident in both GAN theory and practical implementation, despite GAN
training being notoriously unstable. This was also my first larger-scale ML-
focused academic project. I also developed my academic presentation skills, as
this was the first dissertation I fully typeset using LATEXrather than Microsoft
Word. Prior to my Master’s degree, I had no experience with typesetting,
mathematical notation, or LATEX, only beginning to learn these skills during the
course. This dissertation was therefore my first opportunity to apply them on
a larger scale.

On the whole, this project has been very engaging for me. Before choosing
to pursue computer science and machine learning, I had an affinity for studying
physics and this project allowed me to reconnect with that interest using skills I
have developed throughout my degree. To date, this project has likely been
the most complex challenge that I have completed, forcing me to research
complicated topics, present and report data in a clear manner, reflect critically
on my choices, and think creatively. These skills will undoubtedly stay with me
as I leave the academic environment and move into the professional world.
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reconstruction methods. In: Akçakaya, M., Doneva, M. and Prieto, C.,
eds., Magnetic Resonance Image Reconstruction, Academic Press, vol. 7
of Advances in Magnetic Resonance Technology and Applications, pp. 105–
125. Available at: https://www.sciencedirect.com/science/article/

pii/B9780128227268000142.

Ham, H., Jun, T. J. and Kim, D. 2020. Unbalanced GANs: Pre-training the
generator of generative adversarial network using variational autoencoder.
CoRR abs/2002.02112. Available at: https://arxiv.org/abs/2002.02112.

Hashemi, R. H., Bradley, W. G., Chen, D. Y., Jordan, J. E., Queralt, J. A.,
Cheng, A. E. and Henrie, J. N. 1995. Suspected multiple sclerosis: MR
imaging with a thin-section fast FLAIR pulse sequence. Radiology 196(2),
pp. 505–510. Available at: https://doi.org/10.1148/radiology.196.2.

7617868. PMID: 7617868.

Hu, J., Gu, X. and Gu, X. 2020. Dual-pathway DenseNets with fully lateral
connections for multimodal brain tumor segmentation. International Journal
of Imaging Systems and Technology 31.

Hua, R., Huo, Q., Gao, Y., Sui, H., Zhang, B., Sun, Y., Mo,
Z. and Shi, F. 2020. Segmenting brain tumor using cascaded V-
Nets in multimodal MR images. Frontiers in Computational Neuro-
science 14. Available at: https://www.frontiersin.org/journals/

computational-neuroscience/articles/10.3389/fncom.2020.00009.

Huang, J., Fang, Y., Wu, Y., Wu, H., Gao, Z., Li, Y., Ser, J. D., Xia, J.
and Yang, G. 2022. Swin transformer for fast MRI, [Online]. Available at:
https://arxiv.org/abs/2201.03230.

Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S. and Seo, J. K. 2018. Deep learning
for undersampled MRI reconstruction. Physics in Medicine and Biology
63(13), p. 135007. Available at: http://dx.doi.org/10.1088/1361-6560/

aac71a.

Jamwal, A. 2025. MRI systems market size, share, and growth forecast from 2025
- 2032, [Online]. Available at: https://www.persistencemarketresearch.
com/market-research/mri-systems-market.asp. Accessed: 07-06-2025.

103

https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.1910340618
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://www.sciencedirect.com/science/article/pii/B9780128227268000142
https://www.sciencedirect.com/science/article/pii/B9780128227268000142
https://arxiv.org/abs/2002.02112
https://doi.org/10.1148/radiology.196.2.7617868
https://doi.org/10.1148/radiology.196.2.7617868
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2020.00009
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2020.00009
https://arxiv.org/abs/2201.03230
http://dx.doi.org/10.1088/1361-6560/aac71a
http://dx.doi.org/10.1088/1361-6560/aac71a
https://www.persistencemarketresearch.com/market-research/mri-systems-market.asp
https://www.persistencemarketresearch.com/market-research/mri-systems-market.asp


Kozlov, S., Kolesnytskyi, O., Korolenko, O., Zhukov, A., Bondarenko, D.,
Smetaniuk, O., Kalizhanova, A. and Komada, P. 2024. Transformers in
image super-resolution: a brief review. In: Romaniuk, R. S., Smolarz, A. and
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Appendix A

Source Code

The full source code for this project can be found on GitHub:
https://github.com/theobaur13/MRI-Super-Resolution
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