

Final Report: Natural Language

Processing for Automated Fact

Verification

CM3203 – One Semester Individual Project

Final Report

Computer Science BSc

Cardiff University
Author: Theodor Baur

Supervisor: Nedjma Ousidhoum

Moderator: Nathan Jones

Spring 2024

II

Abstract

Automated fact-checking is a crucial step to combatting the rising issue of

misinformation, particularly online. This report implements an automated

evidence retrieval system, ESOTERIC (Elasticsearch Semantic Optimised Text

Extraction Retrieval from Information Corpus), and deploys this system in a web

application. ESOTERIC is designed to identify evidence documents and passages

from the FEVER dataset which are relevant to a factual claim, whilst operating

on consumer-grade hardware. The system employs a novel approach by aiming

to ask fact-finding questions to verify information from the claim using named

entity recognition, answer-aware question generation, and dense passage retrieval

to identify relevant documents, training a custom classification model to identify

relevant evidence passages. Key findings show that ESOTERIC achieves recall

rates of 77.37% for documents and 60.84% for passages, achieving a notably high

F1 score of 60.56% for the retrieval of passages. Ultimately, this project

contributes to the field by demonstrating the feasibility of using automated

evidence retrieval on consumer-grade hardware within reasonable timeframes.

Acknowledgements

I would like to thank my supervisor Nedjma Ousidhoum for offering guidance,

suggestions, and foundational resources for this project.

 III

Content

Abstract .. II

Acknowledgements ... II

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Problem Definition .. 3

2 Background ... 4

2.1 Core Natural Language Processing Techniques 4

2.1.1 Question Answering (QA) ... 4

2.1.2 Question Generation ... 5

2.1.3 Named Entity Recognition (NER) ... 6

2.2 Language Models ... 6

2.2.1 Neural Networks ... 6

2.2.2 Recurrent Neural Network (RNN) ... 7

2.2.3 Attention Mechanism .. 8

2.2.4 Tokenisation ... 8

2.2.5 Transformer Architecture .. 8

2.2.6 Vector Embeddings ... 10

2.2.7 Language Models ... 11

2.2.8 Bidirectional Encoder Representations from Transformers

(BERT) 12

2.2.9 DistilBERT ... 12

2.2.10 T5 ... 12

2.2.11 Mistral ... 13

2.2.12 Hugging Face ... 13

2.2.13 Transformers Library ... 13

2.3 Retrieval.. 13

2.3.1 Lexical Similarity .. 14

2.3.2 Semantic Matching and Semantic Similarity 14

2.3.3 BM25 .. 14

 IV

2.3.4 Dense Passage Retrieval (DPR) .. 15

2.3.5 Haystack ... 15

2.4 Data Storage on Elasticsearch 16

2.5 Key Datasets ... 16

2.5.1 FEVER Dataset .. 16

2.5.2 Stanford Question Answering Dataset 1 and 2 (SQuAD) 17

2.5.3 Natural Questions (NQ) .. 18

2.6 Existing Works .. 18

3 Methodology.. 19

3.1 Specification .. 19

3.1.1 Resource Limitations ... 20

3.2 Approach ... 21

3.3 Design and Implementation .. 23

3.3.1 Document Retriever .. 25

3.3.2 Passage Retriever .. 28

3.3.3 Classes .. 28

3.3.4 Elasticsearch Document Store ... 30

3.3.5 Split Pipelines for Document Retrieval 32

3.3.6 Named Entity Recognition + Answer Extraction 33

3.3.7 Text Matching Pipeline ... 36

3.3.8 Question-Based Ranking System ... 39

3.3.9 Dense Passage Retrieval .. 49

3.3.10 Relevancy Classification Model .. 53

3.3.11 Final Ranking Using Semantic Similarity 57

3.3.12 Web Application .. 58

4 Results and Evaluation ... 63

4.1 Metrics .. 63

4.2 Strategy ... 65

4.3 System Results and Evaluation 68

5 Conclusion ... 73

 V

6 Future Work ... 74

7 Reflection .. 76

8 Bibliography .. 80

9 Appendices .. 85

Appendix A ... 85

9.1.1 Version Comparison Table .. 85

9.1.2 Version 0.1 .. 85

9.1.3 Version 1.0 .. 86

9.1.4 Version 1.1 .. 87

9.1.5 Version 1.2 .. 87

9.1.6 Version 1.3 .. 87

9.1.7 Version 1.4 .. 88

9.1.8 Version 1.5 .. 88

9.1.9 Version 1.6 .. 88

9.1.10 Version 1.7 .. 88

9.1.11 Final Version ... 88

Appendix B .. 90

Appendix C .. 91

Appendix D ... 93

Appendix E .. 94

Appendix F .. 96

Appendix G ... 97

Appendix H ... 97

 1

1 Introduction

“Natural Language Processing is part of multiple

automated fact-checking systems and related tasks such as

rumour detection. It can be helpful at different steps in the

verification process such as when identifying claims,

retrieving evidence, etc.

In this work, the student will choose the fact verification

sub-task they would like to focus on and study the related

literature. They will then implement an NLP, or an

Information Retrieval (IR) based method for this subtask,

analyse their results and share their insights.”

1.1 Motivation

Misinformation is a growing issue in society, and whilst it is not new, the

adoption of the internet into people’s daily lives seems to have magnified its

power. It can be described as information which is fake or misleading and is

spread unintentionally. (Mathew & T, 2022). Public internet platforms allow for

the rapid dissemination of misinformative content which can sometimes elicit

harmful social responses (Del Vicario, et al., 2016). One instance of this

phenomenon was recorded by the World Health Organization, which found that

exposure to misinformation about vaccinations led to approximately a 6-

percentage-point reduction in the intention to get vaccinated among those who

initially stated they would “definitely accept a vaccine.” (Linden, 2022). One

proposed method to try and help tackle the issue of misinformation is a corrective

approach, wherein people are provided with a wider range of better-quality fact-

checking facilities (Bernhard & Dohle, 2015).

Fact-checking is the task of assessing whether claims communicated are true.

This process can be time-consuming if done manually, taking professional fact-

checkers a considerable amount of time to parse through hundreds of sources to

determine if a claim is true. Automated fact-checking aims to help speed up this

 2

process. One proposed framework for automated fact-checking can be modelled

as a series of components that can be represented using natural language

processing tasks, which is shown in Figure 1. This pipeline includes three stages:

claim detection, the process of deciding which claims to fact-check; evidence

retrieval, the process of finding sources supporting or refuting the claim; and

claim verification, the assessment of the veracity of the claim based on the

retrieved evidence. (Guo, et al., 2022).

Figure 1: A natural language processing framework for automated fact checking.

(Guo, et al., 2022)

The evidence retrieval stage is crucial in the fact-checking process as it sets the

foundation for any downstream veracity judgements. The quality of the evidence

retrieved directly affects the veracity reliability and accuracy of the fact-checking

outcome. (Lee, et al., 2021)

We propose ESOTERIC: Elasticsearch Semantic Optimised Text Extraction

Retrieval from Information Corpus, an evidence retrieval system, capable of

retrieving source documents and passages supporting or refuting a given claim,

from within a large corpus of information. This corpus is the pre-existing Fact

Extraction and VERification (FEVER) dataset, covering a broad range of non-

specialised topics, extracted from 5.45 million Wikipedia articles, as to let the

system receive a wide catchment of potential users due to its general

applicability, promoting the general use of automated fact-checking systems.

We intend to make this system accessible and attractive to the general

population by wrapping the retrieval system in a simple user-friendly web

application, allowing internet users immediate access to fact-checking facilities

which in turn aims to curb the growing pertinence of online misinformation.

 3

We aim to design a system that can be run on non-specialised hardware

enhancing its usability across various platforms and devices, including machines

often used by individuals not equipped with high-end computing resources. This

accessibility will democratise the ability to perform accurate fact-checking,

thereby empowering a broader audience to engage in critical analysis and

contribute to the fight against misinformation effectively, addressing the current

lack of evidence-retrieval systems designed to be run on consumer hardware.

The development of a unique evidence-retrieval system is also aimed at

supporting researchers who are looking to create new fact-checking or evidence-

retrieval systems, by adding to the body of academic research into different stages

of the fact-checking framework.

1.2 Problem Definition

The evidence retrieval process aims to retrieve relevant evidence documents and

passages from a corpus of evidence, from a claim given by a user. An example is

provided in Figure 2.

Claim: The world is flat.

Evidence:

[Spherical_Earth]

The roughly spherical shape of Earth can be empirically evidenced by

many different types of observation, ranging from ground level, flight,

or orbit. The spherical shape causes a number of effects and

phenomena that combined disprove flat Earth beliefs.

Corpus:

[Spherical_Earth]

The roughly spherical shape of Earth can be empirically evidenced by

many different types of observation, ranging from ground level, flight,

or orbit. The spherical shape causes a number of effects and

phenomena that combined disprove flat Earth beliefs.
[Earthworm]

An earthworm is a soil-dwelling terrestrial invertebrate that belongs

to the phylum Annelida. The term is the common name for the largest

 4

members of the class (or subclass, depending on the author)

Oligochaeta.

Figure 2: Example claim, retrieved evidence for claim, and evidence corpus.

Whilst there are many different existing solutions for evidence retrieval systems

on large document corpora, with some specifically designed for the dataset being

used in this paper, there is not much focus on making these evidence retrieval

systems perform on consumer hardware.

2 Background

This section explains key information and concepts relating to different natural

language processing techniques used in the solution, types of language models

used, different retrieval strategies, different data stores, utilised datasets, and

existing works.

2.1 Core Natural Language Processing Techniques

Natural Language Processing (NLP) is a field focused on understanding human

language. It is important to note that NLP tasks aim to understand the meaning

of words individually, but more crucially within the contexts that they are given

in. The NLP field contains a range of subtasks such as Question Answering,

Named Entity Recognition, and language translation. (Hugging Face, 2024)

2.1.1 Question Answering (QA)

Question Answering (QA) is a subtask of NLP that involves the extraction of

answers from a given context to answer a given question. There two main

variants of QA: Extractive QA and Abstractive QA.

Extractive QA – The model extracts an answer passage from a context for

a question (Wang, et al., 2022), both given as inputs as demonstrated in Figure

3:

Question: What shape is the Earth?

 5

Context: The roughly spherical shape of Earth can be empirically

evidenced by many different types of observation, ranging from

ground level, flight, or orbit. The spherical shape causes a number

of effects and phenomena that combined disprove flat Earth

beliefs.

Answer: Spherical

Figure 3: Example inputs and outputs using Extractive Question Answering

Abstractive QA – The model generates free text from a context for a given

question (Zafar, et al., 2024), both given as inputs as demonstrated in Figure 4.

Question: What shape is the Earth?

Context: The roughly spherical shape of Earth can be empirically

evidenced by many different types of observation, ranging from

ground level, flight, or orbit. The spherical shape causes a number

of effects and phenomena that combined disprove flat Earth

beliefs.

Answer: The Earth has a spherical shape

Figure 4: Example inputs and outputs using Open Generative Question Answering

The implemented solution primarily makes use of Extractive QA to help score

documents based on how well they answer questions relating to the claim.

2.1.2 Question Generation

Question generation (specifically automated question generation for the scope of

this paper) is a task where questions are generated based on a natural language

paragraph (Mulla & Gharpure, 2023). Question generation systems can be

answer-aware or answer-unaware. Answer-aware systems require a specific

answer and context to be given in order to generate a question. Answer-unaware

question generation systems only require a context to generate a question (Do,

et al., 2023).

 6

2.1.3 Named Entity Recognition (NER)

Named Entity Recognition (NER) is a subtask of NLP that involves the

extraction of named entities in a piece of unstructured text. A named entity

refers to a key subject in a piece of text such as names, companies, locations,

times, or topics that have proper names or noun phrases that act as unique

identifiers (Nadeau & Sekine, 2007). For example, consider the passage:

“Barack Obama (a former president of the United

States) drove a Kia Soul.”

The following named entities can be extracted using NER:

[“Barack Obama”, “United States”, “Kia Soul”]

The implemented solution makes use of NER to pick spans of text out from the

claim to match with document titles or document text.

2.2 Language Models

Different language models are used for different processes. This section aims to

explain how language models work fundamentally, then list the key language

models used in this paper.

2.2.1 Neural Networks

A neural network is a structure comprised of connected nodes called neurons,

connected by edges. A neuron is a single node that takes one or more inputs,

applies weights to these inputs, then performs a computation on these inputs to

produce an output. A neural network consists of a multitude of connected

neurons organised into layers, typically starting with the input layer, into the

intermediary hidden layers, finally into the output layer. Each neuron and edge

are typically assigned a weight value.

An input layer passes data directly into the first hidden layer using a set of

neurons. Each hidden layer is a set of neurons that receives data from the

previous layer, applying weights and transforming them using non-linear

functions and passing the output onto the next layer. The output layer receives

 7

data from the final hidden layer and transforms this data to produce a final

result. (Lek & Park, 2016)

Figure 5: Three-layered feed-forward neural network with one input layer, one (or

more) hidden layer(s), and one output layer: X, independent variables; Y, dependent

variables; and Y0, values computed from the model. (Lek & Park, 2016)

Neural networks provide the basic framework for machine learning models.

2.2.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a type of neural network that contains a

“memory” of previous inputs to influence the current input and output. A

traditional neural network assumes that each set of inputs and outputs are

independent of each other (Schmidt, 2019).

In an NLP context, past text tokens in a passage are often needed as context

for a task. For example, consider the passage:

“My family is German, so I speak a bit of ___.”

When trying to predict the next word in the passage, the context provided by

the earlier part in the sentence is crucial, as the word “German” would strongly

imply that the next word would also be “German”. A non-RNN would struggle

to generate the next word as it does not have a memory of the earlier context in

the passage.

 8

2.2.3 Attention Mechanism

Attention Mechanism is a method employed by neural networks to focus on

specific parts of input data that may be more relevant, therefore require more

focus when producing an output. In the context of NLP this can mean that

certain words or sequences can be given a higher weight, showing their higher

relative importance within a larger word sequence (Vaswani, et al., 2017). Take

the NLP task of translating the following phrase from German to English:

“Kannst du mir helfen diesen Satz zu uebersetzen?”

Translating this sentence word-by-word would result in the following English

translation:

“Can you me help this sentence to translate?”

Using attention mechanisms, higher weights can be applied to words such as

“Kannst” (can) and “helfen” (help), along with the main action “zu uebersetzen"

(to translate), meaning that, when generating a response, the model can more

accurately capture the intention of the sentence as understood in English:

“Can you help me to translate this sentence?”

2.2.4 Tokenisation

Tokenisation is the process of splitting individual pieces of text, which are

normally words or pieces of punctuation, into “tokens”, which are designed to be

readable by a specific language model. This is normally done by first splitting

text into tokens, then mapping these tokens to their specific token ID. These

token IDs can then be read by a language model and converted into a useful

vector representation. (Webster & Kit, 1992)

2.2.5 Transformer Architecture

Transformer Architecture is a deep learning architecture that consists of two

pieces, the encoder and the decoder. The encoder accepts inputs, passing on data

 9

into the decoder. The decoder accepts multiple outputs from the encoder to

generate a prediction (Vaswani, et al., 2017).

Encoder – The encoder transforms embedding IDs from the tokeniser into

vector representations using bi-directional self-attention as well as positional

encoding. This means that for a given text passage, the encoder considers the

entire sentence and weights important words in the sentence using self-attention,

and records the positions of the words using positional encoding. Using these

mechanisms, a numerical vector representation of the sentence can be generated

and passed into the decoder.

Decoder – The decoder’s purpose is to generate an output step-by-step,

considering both the original output received from the encoder to maintain

context, and any previous outputs generated by the decoder to decipher what to

generate next. The decoder also uses self-attention to help weight important

words, however, it masks itself from seeing future tokens like the encoder, making

it uni-directional. It is also autoregressive, meaning that it uses past outputs to

predict future outputs.

The encode-decoder structure can be seen below in Figure 6.

Figure 6: The encoder-decoder structure of the Transformer architecture. (Vaswani,

et al., 2017)

 10

Consider the NLP task of generating a textual response for the following

question:

“How are you?”

1. The tokeniser first splits the question into the following tokens:

[“How”, “are”, “you”, “?”]

These tokens are then mapped to token IDs. Using the token IDs the

encoder can then generate vector representations of these words.

2. Using self-attention, weights are applied to each token to indicate the

significance of each token. This is done using bi-directional

understanding, meaning that for each token, any past or future tokens

relating to it can be seen.

3. Positional encoding is applied to give the model information about the

word order of the question. This is important as the question can take

on a different meaning if the positions of words are not considered.

Consider the swapping of the following two words:

“How are you?”

“You are how?

4. Using self-attention, the decoder can generate the output sequentially

(token-by-token), considering both the encoder's output and its previous

outputs to produce the next token. This architecture is central to tasks

like translation or text generation, where understanding the context and

sequence is crucial.

The encoder process is used by all language models in this project, and the

decoder process is also used by the T5 model (see 2.2.10).

2.2.6 Vector Embeddings

In NLP, words can be represented as vectors, with words that are closer together

in the vector space being more contextually similar. For example, the word “dog”

and “pet” may be relatively close to each other in the vector space. These vectors

 11

often have hundreds of dimensions to help better represent relationships between

words such as synonyms, antonyms, and other linguistic patterns. (Liu, et al.,

2017)

2.2.7 Language Models

Language models are machine learning models designed to understand and

generate natural language, as well as perform different NLP tasks. Modern

language models are normally pretrained on a large corpus of text to build an

understanding of language and grammar patterns. Once pretrained, language

models can be fine-tuned to perform a specific NLP task, such as NER, using a

dataset containing samples relating to that specific NLP task. (Devlin, et al.,

2019)

Foundationally, language models rely on a neural network architecture to

process a set of word vector representations into a deeper understanding of text.

A language model can produce a range of outputs such as: predicted next word

tokens, answers to questions, attention weights that indicate how much focus

was given to different input tokens, or contextual vector embeddings to represent

each token within the input sequences context.

Language models make use of RNNs to “remember” previous inputs, helping

to understand context in longer passages of text. Attention mechanism is used

inside the neural network to weight more contextually important words, whilst

using transformer architecture to take input sequences and produce outputs step-

by-step while referring back to the encoder and previous decoder outputs.

Large Language Models (LLMs) are characterised by their size. They are

often pretrained on a far larger text corpus than traditional language models,

using a much larger neural network. This scale allows them to capture a much

broader range of linguistic patterns and contextual nuances. LLMs sometimes

exhibit emergent abilities not explicitly programmed or expected such as

explaining text (Wei, et al., 2022) or in the case of this project, making

judgements if a set of evidence passages supports, refutes, or does not provide

enough evidence for a factual claim.

 12

2.2.8 Bidirectional Encoder Representations from Transformers

(BERT)

Bidirectional Encoder Representations from Transformers (BERT), is a language

model made by Google in 2018, based on the transformer architecture. BERT

was pre-trained using the Toronto BookCorpus (containing 800 million words),

and English Wikipedia (containing 2.5 billion words) (Devlin, et al., 2019).

BERT is an encoder-only model, meaning it does not contain a decoder. This

means that it can convert word tokens into a vector representation, which can

help solve NLP tasks, but BERT does not have a mechanism to decode these

vector representations back into word tokens. It was regarded as significant due

to its capability to understand both left and right contexts of a word in a

sentence, unlike previous models that primarily focused on one-directional

understanding. BERT set a new standard in the NLP field and as a result, many

different language model variants are adaptations of BERT.

2.2.9 DistilBERT

The DistilBERT model is a smaller variant of the BERT model. The DistilBERT

model is 40% smaller than BERT and is shown to retain 97% of its language

understanding capabilities whilst being 60% faster than BERT. (Sanh, et al.,

2020). The improved speed and smaller size make DistilBERT the most viable

language model for certain use-cases in this project due to the performance

limitations of my personal computer and laptop. DistilBERT is also an encoder-

only model.

2.2.10 T5

The T5 model is an encoder-decoder model, unlike BERT and DistilBERT,

meaning it can receiver word tokens, encode the tokens into vector

representation, and decode the vector representation back into word tokens. T5

is already pre-trained on a multitude of NLP tasks such as translation and

summarisation (Raffel, et al., 2023). The T5 model is naturally suited to tasks

like text generation or answer-aware question generation. The system in this

 13

report makes use of the T5 model for extracting key information out of claims,

and generating questions based on this key information.

2.2.11 Mistral

Mistral is a decoder-only large language model which operates at a 187 times

reduced cost compared to GPT-4 models and is capable of outperforming Meta’s

much larger LLaMA 2 70B LLM (Jiang, et al., 2023). It is a generative text model

with 7 billion parameters that demonstrates impressive performance as well as a

relatively low size and cost compared to competitor LLMs. It is open source and

publicly available using either the Hugging Face hub (Hugging Face, 2024) or

Mistral’s dedicated API service (Mistral AI, 2024).

2.2.12 Hugging Face

The Hugging Face platform contains a hub that hosts language models, datasets,

and other NLP-related content. It hosts a wide variety of language models that

have been fine-tuned for specific and niche purposes, which have been uploaded

by users. This project makes use of some of these models. The models can be

accessed using the Transformers library (which is maintained by Hugging Face).

2.2.13 Transformers Library

The Transformers library provides an API that enables users to perform a range

of machine learning tasks such as NLP, computer vision, audio classification, and

multimodal tasks (Hugging Face, 2024). It is used in this project to download

language models from the Hugging Face hub, train and fine-tune language

models, and perform tokenisation.

2.3 Retrieval

This section explains some of the different methods used to retrieve text from a

corpus.

 14

2.3.1 Lexical Similarity

Lexical Similarity is the measure to which degree two given word sets are similar,

based on the intersection of words. It does not account for the semantic meaning

of the words. Two texts that receive a lexical similarity of 1 suggest that they

have a complete overlap of words. Consider the following passages:

“The cat sat on the mat.”

“The feline rested on the rug.”

“The cat ate on the mat.”

The first passage and the last passage would receive a high lexical similarity score

as they have a high overlap of words, however the first passage and the second

passage would receive a low lexical similarity score as they share less words, of

which are common words. The final system makes use of lexical similarity when

ordering document texts from a database, previous versions of the system

featured lexical similarity more heavily.

2.3.2 Semantic Matching and Semantic Similarity

Semantic Matching is a technique used to detect if two textual passages have a

similar meaning (Shvaiko, et al., 2007). Consider the previous passages in 2.3.1,

the first passage and the second passage will likely return a semantic match due

to their similarity in meaning, even though much of the vocabulary is not shared

between the two passages. Conversely, despite sharing similar vocabulary, the

first and third passage will not return a semantic match as they do not share a

similar meaning. Our solution makes use of semantic matching to rank

documents and select passages that have a similar meaning to the input claim.

2.3.3 BM25

BM25 is a widely used lexical similarity measure. It takes a query and a set of

documents, ranking them based on the relevance the documents have to the

search query. It considers the frequency of each term in the document, how

frequently the term appears in other documents (higher scores are given if the

term is rarer in other documents), the document length, and a number of other

 15

factors. BM25 score was the primary lexical similarity measurement used in the

final system.

2.3.4 Dense Passage Retrieval (DPR)

Dense Passage Retrieval is a more advanced retrieval technique than BM25,

classing as a semantic matching technique. It is designed to receive a corpus of

document texts, represented as vector embeddings, and a query, also represented

as vector embeddings. The retriever then uses some sort of similarity metric such

as dot product similarity (a method of measuring the similarity between two

vectors by comparing the angle of two vectors in the vector space), cosine

similarity, or Euclidean distance to determine the closest document vectors to

the query in the vector space (Karpukhin, et al., 2020).

Embeddings are normally encoded using the same model, however, sometimes

a dual-encoder DPR system is used. A dual-encoder system encodes the query

using a special model, specifically designed to convert the query into vector

representation that captures semantically important information in the query,

and encodes the document corpus using a context encoder, which is specifically

designed to capture important semantic information and properties in the corpus.

In a dual-encoder system, both encoders are specialised to allow each encoder to

tailor its parameters to better handle the characteristics of its respective inputs,

such as different lengths or complexities found in queries versus documents

(Devendra Sachan, et al., 2023).

The final system makes use of a Dense Passage Retriever that uses a custom

dual-encoder system specifically designed to encode questions as queries, and

documents as contexts.

2.3.5 Haystack

Haystack is a Python framework created by deepset containing tools designed to

help build applications with large language models and NLP techniques. It

supports models hosted on the Hugging Face hub as well as a number of different

hosting platforms. It also can easily access and format data for NLP tasks that

are stored on a range of different data hosting platforms such as Elasticsearch,

 16

which was used as data storage for this project. It contains an integrated DPR

tool (Deepset, 2024) which is used in this project.

2.4 Data Storage on Elasticsearch

Elasticsearch is a data storage system and search engine specifically designed to

handle large volumes of data and perform full-text search efficiently on this data.

It is built upon another high-performance full-text search engine library called

Lucene. It makes use of an inverted index to help map words in text back to the

address of their original documents as well as having inbuilt processes to sort

documents by BM25 score. It also contains its own query language that provides

custom text-match searching features. Crucially, Elasticsearch also provides

native support for high-dimensional word embedding vectors, meaning that word

embeddings can be processed before runtime and then accessed at runtime,

cutting out the time-consuming step of encoding passages of text.

2.5 Key Datasets

This section introduces the dataset which we will use for our document corpus

(the FEVER dataset), and two datasets which are used to train models found in

our final solution.

2.5.1 FEVER Dataset

The FEVER dataset is comprised of 184,445 human-generated claims, each claim

is labelled as SUPPORTED, REFUTED, or NOTENOUGHINFO. Each claim

was made by mutating sentences from the introductory sections of Wikipedia

articles, the label reflecting the veracity of the claim, given the set of evidence

sentences from the Wikipedia articles. The portion of the dataset used in this

report follows the structure in shown in Figure 7. The evidence document is a

tuple containing the Annotation ID, Evidence ID, Document ID, and Sentence

ID. The test set follows the same format as the training and development sets;

however, it does not have a label, evidence, or verifiable field.

{

"id": 89891,

 17

"verifiable": "VERIFIABLE",

"label": "REFUTES",

"claim": "Damon Albarn's debut album was released in

2011.",

"evidence": [

[

 [107201, 120581, "Damon_Albarn", 17]

]

]

}

Figure 7: FEVER training and development set example value.

The FEVER dataset also includes the source documents which the claims are

referring to. These source documents are extracted introductory sections of

Wikipedia articles and contain an ID field (referring to the Wikipedia URL of

the source document), a text field containing the introductory section, and a lines

field which contains the text field with preserved formatting. There are 5,416,537

separate articles split between 109 JSONL documents, each of which follows the

same structure as the example shown in Figure 8.

{

"id": "1928_in_association_football",

"text": "The following are the football -LRB- soccer RRB-

events of the year 1928 throughout the world . ",

"lines": "0\tThe following are the football -LRB- soccer

-RRB- events of the year 1928 throughout the world .\n1\t"

}

Figure 8: FEVER Wikipedia set example value.

2.5.2 Stanford Question Answering Dataset 1 and 2 (SQuAD)

The SQuAD dataset is a collection of question-answer pairings that were created

by crowd-workers around a set of Wikipedia articles. The SQuAD 1 dataset

contains 100,000 questions with answers within the Wikipedia article set

(Rajpurkar, et al., 2016), and the SQuAD 2 dataset contains 50,000 questions

that were unanswerable within the Wikipedia set (Rajpurkar, et al., 2018).

Specifically, the SQuAD datasets contain answer, question, and context fields.

This dataset is one of the most notable QA datasets and is often used to train

 18

QG models and QA models. The final system does make use of models that use

the SQuAD dataset.

2.5.3 Natural Questions (NQ)

The NQ dataset is a large-scale QA dataset, like SQuAD, produced by Google.

Its questions are formulated using real Google search queries regarding certain

contexts. It follows a similar structure to the SQuAD dataset. This dataset was

used to train models for a dual-encoder system used in the final solution.

(Kwiatkowski, et al., 2019)

2.6 Existing Works

The Fact Extraction and VERification (FEVER) shared task was proposed in

2018 to raise interest in automated fact verification. It uses the FEVER dataset

and required participants to develop systems to retrieve evidence and predict the

truthfulness of human-generated claims against a set of textual evidence retrieved

from the Wikipedia extracts in the FEVER dataset.

Due to the nature of being a shared task, it has several pre-existing solutions

developed by researchers and developers. This paper discusses the Nie et al.

(2018) implementation, which was the highest scoring solution to the shared task,

as well as the FEVER baseline solution, which was the original solution proposed

that achieved lower results, acting as a baseline solution to compare other

solutions to (Thorne, et al., 2018).

 19

3 Methodology

This section states the specification that the system needed to fill, and the

approach used to develop the solution. The section then briefly describes the

overall design of the system, before going into detail about how each part of the

system was implemented, what decisions were made during implementation, and

the justifications for those decisions.

3.1 Specification

The system was designed to take a factual claim from a user to be checked,

retrieving documents that are relevant to either support or refute the claim from

a document corpus. It then needed to retrieve relevant passages that either

supported or refuted the claim, at which point these passages and documents

needed to be presented to the user, sorted by their overall likelihood that they

support or refute the claim.

The second objective of the system was to present this information in a

website in a user-friendly manner, as such it needed to present both the

documents and passages in a clear manner to the user. The following

requirements were set before the undertaking of the project to help:

1. Retrieval of Evidence - The system must efficiently search and

retrieve relevant evidence passages to the user’s claim, retrieved from the

FEVER dataset’s Wikipedia extracts.

2. Retrieval of Documents - The system must efficiently search and

retrieve contextually relevant documents to the user’s query.

3. Retrieval of Passages - The system should identify and extract specific

passages from documents that are contextually relevant to the user's

query.

4. Presentation of Evidence - Retrieved evidence must be presented in

a user-friendly format that clearly highlights the relevance to the query.

5. Performance of System - The system should be able to perform

retrieval within a reasonable time frame for the user, meaning that

queries should not take excessively long, as this could discourage users

 20

from engaging with the system. The system should also run on the device

specifications listed below in Section 3.1.1.

3.1.1 Resource Limitations

The task solution was created on a personal computer, therefore any models used

were required to run on this computer. In addition, the solution was designed to

operate in the context of a Flask web-application, therefore it was required to

finish execution within a reasonable time, without extensive resource use. In

practice this resulted in decisions being made to prioritise performance or faster

execution over accuracy. Google Colab was used for small parts of development.

Exact specifications for the computer are listed below:

Type Component

CPU AMD Ryzen 5 4500U 2.38 GHz

GPU None

RAM 8GB DDR4 RAM

Storage 1TB SSD

 21

3.2 Approach

The project development followed an iterative methodology strategy. Due to the

existence of the FEVER shared task, we had access to previous systems alongside

reporting on the effectiveness of these systems. This meant that we could use

some effective methods from these systems as inspiration for our own.

Figure 9: Iterative Methodology Diagram

The process began by reading the analysis reports for the other systems and

choosing methods and techniques that were reported to be effective to design a

baseline system. The design for the baseline system was then implemented. The

purpose of the baseline system was to build a foundation that could be analysed

and improved on iteratively.

The next step in the process was to assess the system based on certain

evaluation metrics. These metrics can change based on the specific system being

assessed but generally tend to be the precision, recall, OFEVER and F1 score of

 22

both the passage and document retriever (explained in 4.1), alongside individual

metrics for each step of the passage and document retriever.

Based on these metrics, we can evaluate which parts of the system are

ineffective at what they are trying to achieve. For example, the recall of a

document retriever could be brought down by an individual ineffective step in

the function, which will be identified in the assessment (shown previously in

Figure 9).

At this stage parts of the system deemed to need improvement have been

identified, therefore potential changes to these parts can be hypothesised.

Once the changes to the system have been hypothesised, they can be

implemented in a second iteration of the system, at this stage the second iteration

of the system can be assessed, leading to an assess-evaluate-hypothesise-

implement cycle as seen in Figure 9.

This methodology allows for several advantages:

1. The cycle ensured that the system was constantly being refined.

2. The cycle ensured that each part of the system was continuously

being evaluated for effectiveness.

3. It ensured that any changes made to the system were being evaluated

both independently of the system and in the context of the whole

system to see if the changes are effective.

4. The hypothesis-driven approach allowed for evidence-driven

improvements on parts of the system that were identified as being

weak.

5. The creation of a baseline system ensured that there was a control

system to compare different systems to.

 23

3.3 Design and Implementation

The system has two separate modules: a document retriever, and a passage

retriever. This structure is like that of the FEVER Baseline (Thorne, et al., 2018)

and UNC-NLP systems (Nie, et al., 2018). The document retriever’s function is

to take an input claim from the user and use NLP techniques to retrieve

documents from an Elasticsearch database which contains the document titles,

texts, and vector embeddings of the entire FEVER evidence corpus (consisting

of all 5.45 million Wikipedia pages) that can be used to assess the veracity of the

claim. The passage retriever’s function is to take the original claim and an array

of documents (acquired using the document retriever) and select the passages in

the documents that can be used to assess the veracity of the claim. With the

combination of these two modules, a user can enter a claim into the system and

receive passages that validate the veracity of the claim. The structure can be

seen in Figure 10.

Figure 10: High-Level Data Flow Diagram

Once implemented, the evidence retrieval system was run inside a Flask

application and the dataset was stored in an Elasticsearch database. This means

that users could view a website containing the evidence retrieval system which

 24

communicates with an external Elasticsearch database. In this project, both the

Elasticsearch database and the Flask application were run locally, however both

can be easily run on dedicated servers. Additionally, a final step was added which

was only present on the web application. The application would take the

retrieved evidence set and claim and use a Mistral large language model to

predict the truthfulness of the claim, giving a justification based on the evidence

available. This was also displayed to the user alongside the evidence passages. A

diagram showing this architecture can be seen below in Figure 11:

Figure 11: Web Application Diagram.

The final evidence retrieval system contains a range of different components in

both the document retriever and the passage retriever. The architecture of both

the document and passage retriever is shown in Appendix B.

 25

3.3.1 Document Retriever

The structure of the document retriever can be seen below in Figure 12.

Figure 12: Document Retriever Diagram.

The final document retriever first takes the input claim given by the user. It then

extracts all named entities from the claim using an NER model as well as all

answer spans (slice of words from a text) using an answer-extraction model. For

example, consider the following claim:

Named Entities, Answers

Claim: “Telemundo is an English-language television

network.”

At this point the system runs two parallel pipelines, the Title Matching pipeline,

and the Text Matching pipeline. The Title Matching pipeline takes the

extracted spans from the claims and searches the database for documents that

contain a document title that exactly matches any of the extracted spans (case-

insensitive). It then searches the database for any documents containing titles

that exactly match the extracted spans but have “disambiguation information”

(as detailed in the Nie et al. implementation and below in Figure 13).

Rule: If the claim contains a span of text that is an exact match of a document

title, however the document title contains disambiguation information in

parentheses, the matching will be considered without considering the text in

the parentheses.

Claim: Savages was exclusively a German film.

Retrieved Documents:

[Savages]

 26

[Savages_(Band)]

[Savages_(2012_film)]

Corpus:

[Savages]

[Savages_(Band)]

[Savages_(2012_film)]

[Savages_Film]

[Noble_Savages]

Figure 13: Disambiguation information rule, as detailed in the Nie et al.

implementation.

Following this, disambiguative documents are then ranked according to their

semantic similarity with the claim and a cutoff score and document limit is

applied to the disambiguative documents. For example, consider the following

spans:

Spans: [“Telemundo”, “English-language”, “television

network”]

Retrieved Document Titles: [

“Telemundo”, “Telemundo (TV show)”, “English

Language”, “Television Network”]

Discarded Document Titles: [“Al Rojo Vivo

(Telemundo)”, “English Language GCSE”]

The title-matched documents are then split into a group containing documents

that were retrieved using an exact match, and a group containing documents

that have disambiguated information in the title. The disambiguative documents

are then separated for further ranking using the question generation ranking

whilst the documents retrieved with an exact title match are automatically

assigned a document score of 1 and are passed into the passage retriever.

The Text Matching pipeline is run in parallel to the Title Matching

pipeline. Using the extracted spans the database is then searched for all

documents that contain a word inside the document text that matches any of

the extracted spans. These are automatically ordered by Elasticsearch in order

 27

of BM25 score. Of these documents the top 1000 are retrieved. These are

concatenated with the disambiguative documents for question generation

ranking.

A separate question generation process also simultaneously takes place at the

same time as the Text Matching and Title Matching pipelines. Using the

extracted spans from the answer extraction model, each extracted span is treated

as an answer to a potential question regarding the claim, whilst the claim itself

is treated as the context of a potential question. Using an extractive question

generation model several potential questions are generated from these answers

and contexts. An example is provided below:

Claim: “Telemundo is an English-language

television network”

Answer Spans: [“Telemundo”, “English-language”,

“television network”]

Generated Questions: [“What is the name of the English-

language television network?”, “What language is

Telemundo?”, “Telemundo is an English-language what?”]

Additionally, each claim also has a manually added polar question to the list of

questions. This is achieved by using a grammatical rule-based approach or, in

difficult cases, the same question generation model is used, but with the answer

set as “No”.

Once the questions have been generated, the document texts of both the

disambiguative documents, and documents obtained using the Text Matching

pipeline are converted alongside their titles using a dense passage retrieval

context encoder model. Each question is then encoded using a dense passage

retrieval question encoder model. The documents are retrieved and assigned a

document score based on the distance in the vector space between their document

texts and each of the generated questions. A cutoff score is applied, and these

documents are then passed into the passage retriever alongside the documents

retrieved by the Title Match pipeline with an exact title match.

 28

3.3.2 Passage Retriever

The structure of the passage retriever can be seen below in Figure 14.

Figure 14: Passage Retrieval Diagram

The passage retriever then splits the document texts into individual sentences.

After this these sentences are put through a fine-tuned language classification

model which was trained to classify whether a sentence was relevant or not to

justify a claim. This model was specifically trained on the FEVER dataset. The

final passage scoring metric is retrieved by calculating the semantic similarity

score between each passage and the claim. Each passage is then sorted by passage

score.

3.3.3 Classes

Three basic classes were created to house evidence (see Figure 15):

 Evidence – Designed to represent entire evidence documents, these can

contain evidence sentences.

 Sentence – Designed to represent individual sentences or passages.

 Evidence Wrapper – Designed to act as an output structure for a

single claim and its retrieved sets of evidence documents and passages.

 29

Figure 15: Class Diagram.

An EvidenceWrapper object is initialised when the retrieval starts, it must be

preloaded with a claim. In the process of the evidence retrieval, evidence

documents in the form of Evidence objects are added. The EvidenceWrapper

contains a range of sorting functions and methods to add, remove, and export

different Evidence objects.

The Evidence class represents a single evidence document. It must be

initialised with evidence text. After initialisation, Sentence objects can be added

which represent individual evidence passages. Each Evidence object contains a

document score, representing how relevant the document is to the claim. It also

contains methods to set and add sentences, as well as merge duplicate or

overlapping sentences which are retrieved using separate methods.

The Sentence class can be initialised with a single evidence passage. It also

has an associated passage score, representing how relevant the passage is to the

original claim, as well as the start and end indices of the passage within the

parent document text. It contains a method to set these indices for a given

document text.

 30

3.3.4 Elasticsearch Document Store

Basic Design

The final system makes use of an Elasticsearch document store to store all 109

JSONL files (containing 5.45 million Wikipedia entries seen in 2.5.1). From the

JSONL files, only the id and text fields were used and loaded into the database.

The remaining lines field only contained the text from the text field, with

added passage breaks and tags, therefore was discarded. The id and text field

were copied directly into a new field doc_id in the Elasticsearch index as these

fields needed to be accessed in both the Title Matching and Text Matching stage

of retrieval. Finally, the text field was also encoded into vector embedding

representations using a DPR context encoder, which would later be used when

using a DPR to re-rank disambiguated and text-matched documents to how well

they match generated questions about the claim. This process can be seen below

in Figure 16.

Figure 16: Elasticsearch database loading from JSONL files.

Justification

In the Title Matching and Text Matching pipelines both the title field (doc_id)

and text field (content) needed to be parsed for strings using a text search.

Elasticsearch makes use of an inverted index to help quickly search for terms

found in the database (Kathare, et al., 2021), therefore was considered a good

choice for this use-case. An inverted index is a data structure that is used in

databases to point to specific rows that contain certain words. If a database has

a column that contains text, this text can be split into word tokens (tokenised),

then for each word, the IDs of the rows in the database that contain that

particular term are stored alongside that particular term. This means that a

 31

row’s ID can immediately be accessed when looking up a certain word. (King,

1974)

It also provided full support for storing high-dimensional vector embeddings,

which are required inside this system to help perform dense passage retrieval

without needing to encode the embeddings each time the system is run.

Two different variations of document stores were used, ultimately

Elasticsearch proved to be the most efficient. An older version of the system used

SQLite with an FTS5 virtual table to perform full-text search on the document

title and text fields rather than Elasticsearch. Table 1 shows the performance of

system Version 1.3, containing a locally hosted SQLite3 database with FTS5

compared with system Version 1.4, containing the exact same retrieval process

(only including document retrieval), however with a locally hosted Elasticsearch

database being used instead of an SQLite database. We can see that, when all

else is kept equal, the average execution time for the SQLite3 version is more

than triple that of the Elasticsearch version while bearing similar retrieval

metrics (for more information on how this test data was created, visit 0)

Metric Version 1.3

(SQLite3 +

FTS5)

Version 1.4

(Elasticsearch)

Document Recall 74.90% 73.66%

Document Precision 10.00% 12.14%

Document F1 17% 21%

OFEVER Document Score 77.40% 74.01%

Average Execution Time 64.70s 18.27s

Table 1: Performance of system Version 1.3 (SQLite + FTS5) compared to Version

1.4 (Elasticsearch).

 32

3.3.5 Split Pipelines for Document Retrieval

Figure 17: Split Pipeline for Document Retrieval Diagram.

The reason as to why the Title Matching pipeline and Text Matching pipeline

were both included in the document retriever module was to help make use of

computationally inexpensive methods of retrieval.

The implementation made by Nie et al. was able to achieve an 88.86% recall

for their keyword matching system, which the Title Search section of this system

aims to mimic. The stated reason that their solution uses a title matching system

is to reduce the search space to make the task of performing semantic similarity

computationally tractable (Nie, et al., 2018), which is a goal also shared by our

system. One issue with their system is that the keyword matching system for

titles is semantics-agnostic, therefore if an exact match of a keyword is not found

in a document title, then the relevant document cannot be retrieved. We attempt

to somewhat mitigate this issue by creating an extra pipeline that is designed to

slightly widen the search space to include not just documents where the keywords

found in the claim are in the title, but also documents where matching keywords

are found inside the document.

It was discovered in a past implementation of this document retrieval system

that trying to process the vector representations of all 5.45 million document

texts is unfeasible. This past implementation encoded 5 of the 109 JSONL files

 33

using the model paraphrase-MiniLM-L6-v2, totalling around 150,000

documents, and stored them using a FAISS index. paraphrase-MiniLM-L6-v2

is regarded as a relatively lightweight model with an encoding speed of 19,000

sentences per second on a V100 GPU, whilst achieving a sentence embedding

score of 62.29 and a semantic search score of 39.19 (Sentence-Transformers,

2024). However, with a single claim running on the system specifications listed

in 3.1.1, this system was not able to retrieve a single claim without running out

of memory and crashing the application. After running the system on a Google

Colab instance with a V100 GPU and 50GB RAM it was discovered that a single

claim would take an estimated 106 hours to retrieve (see Figure 18).

Figure 18: Screenshot of singular claim running on Google Colab on previous system.

3.3.6 Named Entity Recognition + Answer Extraction

Basic Design

The NER system in this version used Hugging Face’s pipeline function to

automatically load the default version of the WikiNEuRal-multilingual-NER

model from the Hugging Face hub. Additionally, this system also uses an answer

extraction model (t5-small-answer-extraction-en) to extract extra relevant

spans to search for as well as correct for named entities not being correctly

extracted. After this the input claim for the user is passed in and spans from the

claim are returned.

Justification

The implementation made by Nie et al. used a keyword matching system where

they would search for document titles that match spans of text from the claim.

These spans of text were identified by a set of grammatical rules. Instead of

 34

opting for this approach, where it can be complicated and time-consuming to

create this set of rules as well as specifically tailored towards the FEVER dataset,

a NER system was used to help identify these spans in a more straightforward

approach.

NER was chosen as a suitable method for identifying these spans as the

FEVER dataset is comprised of Wikipedia articles, which are almost all

information regarding a named entity by design. In addition, almost all factual

claims provided in the FEVER dataset contain named entities.

The WikiNEuRal model was initially chosen as it performed NER, and was

specifically fine-tuned on the WikiNEuRal dataset, which was generated from

Wikipedia articles (Tedeschi, et al., 2021). The assumption was made that since

the FEVER dataset contains entirely Wikipedia articles, an NER model trained

on a dataset with a similar structure and content from the same source would be

more suited to the task.

The answer extraction model was also added to the function as it helped

catch additional named entities that were not found using the NER model. It is

a T5 model, trained to extract answers from marked sentences within a given

context on the SQuAD 2 dataset. Whilst it is not specifically trained for NER,

it generally tends to extract more accurate names for named movies and

television show names, as often the WikiNEuRal NER struggles to correctly

identify a television or show name beginning with an article. An example is given

below in Figure 19 and Figure 20 where the correct entity is “The Kerner

Entertainment Company”:

 35

Figure 19: Example output of WikiNEuRal-multilingual-NER using claim from

FEVER dataset.

Figure 20: Example output of t5-small-answer-extraction-en using claim from

FEVER dataset.

Several other different models and systems were tested for the extraction of

spans. Namely using spaCy’s en_core_web_sm model alongside its inbuilt entity

extraction module, bert_base_ner, as well as just running WikiNEuRal-

multilingual-NER and t5-small-answer-extraction-en on their own,

however these all achieved comparatively worse results.

 36

Implementation

We first initialise the models within an EvidenceRetriever class as attribute

using the Transformers pipeline, automatically downloading the model from the

Hugging Face hub. The output from both the NER and answer extraction model

is then generated and reformatted, then concatenated. After this process

duplicate values are removed, as well as useless values such as “#” if present in

the list. The code can be seen in Figure 21.

self.NER_model = pipeline("token-classification",
model="Babelscape/wikineural-multilingual-ner",
grouped_entities=True)
self.answer_extraction_pipe = pipeline("text2text-
generation", model="vabatista/t5-small-answer-extraction-en")
def extract_entities(answer_pipe, NER_pipe, text):
 # Extract entities from text through answer pipeline
 input = "extract entities: <ha> " + text + " <ha>"
 output = answer_pipe(input)

 entities = []
 answers = output[0]['generated_text'].split("<sep>")
 entities.append(answers)

 # Extract entities from text through NER
 NER_results = NER_pipe(text)
 entities.append(NER_results)

 # Remove duplicates
 entities = list(set(entities))

 return entities

Figure 21: NER model loading and NER function code implementation.

3.3.7 Text Matching Pipeline

Implementation

The text matching search function receives all entity spans detected alongside a

variable document limit (default set to 100, however final versions use a limit of

1000) and an Elasticsearch instance. A new query is created containing a should

clause. A should clause in this scenario returns true if one or more conditions

inside the clause are met, essentially acting as a logical OR. Inside the should

 37

clause is a match_phrase condition which simply searches for exact text matches

of a specified phrase, in this case each entity span. The results are automatically

ordered using BM25 ranking, having the effect ordering the documents where the

entity span is most relevant to the document text first. The code for this query

is shown in Figure 22.

def text_match_search(entities, es, limit=100):
 # Retrieve documents from db containing query
 query_body = {
 "query": {
 "bool": {
 "should": [
 {"match_phrase": {"content": entity}}
 for entity in entities
],
 "minimum_should_match": 1
 }
 },
 "size": limit
 }

 response = es.search(index="documents", body=query_body)

Figure 22: Code showing Elasticsearch query for Text Matching pipeline.

After this the 𝑁 documents are passed into the generated question ranking

system alongside the disambiguative documents.

Justification

As mentioned earlier, the reason the text-matching pipeline was included was to

help retrieve documents that contained evidence for claims that do not have

matching entity spans in the document title. An example of this is one of the

claims inside the test subset below:

 38

Claim: “Charles I's wife gave birth to his two

immediate successors.”

In this example, Henrietta_Maria_of_France can never be found by using a

purely title-matching approach, however it can be found using our Text Matching

pipeline as its document text contains an entity span that matches one in the

claim.

It is also worth noting that, this step was created with the intent of narrowing

the search space as much as possible without filtering out relevant documents.

Ideally the question ranking stage would simply be applied to all documents,

however in previous versions, similarity search for the whole corpus was found

to be intractable (see Figure 18) therefore this filter had to be applied.

Though the percentage of correct documents retrieved using the Text

Matching pipeline tends to vary among the systems implemented, it always

contributes a substantial amount towards the final set of correct documents

retrieved, showing the pipeline is indeed worth including. This can be observed

in Table 2.

Metric Title Match

(as % of hits)

Disambiguation

(as % of hits)

Text Match

(as % of hits)

Version 1.0 88.64% 5.11% 6.25%

Version 1.1 61.66% 5.13% 33.20%

Version 1.2 58.00% 4.46% 37.55%

 39

Version 1.3 88.46% 4.95% 6.59%

Version 1.4 89.94% 5.03% 6.59%

Version 1.5 85.64% 9.57% 4.79%

Version 1.6 85.71% 9.82% 4.46%

Version 1.7 80.84% 8.14% 11.02%

Final Version 85.64% 9.57% 4.79%

Table 2: Comparison of percentage of documents retrieved by different retrieval

methods.

3.3.8 Question-Based Ranking System

Figure 23: Diagram of Question Based Ranking System.

Implementation

The question generation system relies on answer-aware question generation to

help generate a set of questions that ask for all key information needed to validate

the claim. It takes extracted spans generated by passing the input claim through

the t5-small-answer-extraction-en model to try and extract key information

that could be used as “answers” for a probing question about the claim. This can

include named entities, dates, and locations. This model was generated using the

SQuAD 2 dataset which contained an answer, question, and context field,

 40

therefore any classes of spans classified as answers in the SQuAD 2 dataset can

be classed as potential “answers”. The implementation of this can be seen below,

first the model is initialised from the Hugging Face hub, and the claim is

formatted and entered into the model (see Figure 24).

self.answer_extraction_pipe = pipeline("text2text-
generation", model="vabatista/t5-small-answer-extraction-en")
Generate questions for each answer in the query
claim_answers = extract_answers(self.answer_extraction_pipe,
claim)
def extract_answers(pipe, context):
 input = "extract answers: <ha> " + context + " <ha>"
 output = pipe(input)

 focals = []
 answers = output[0]['generated_text'].split("<sep>")
 for answer in answers:
 if answer != "":
 focals.append({'focal': answer, 'type':
"ANSWER"})
 return focals

Figure 24: Code showing answer extraction process.

A question is generated around each answer span using the t5-base-finetuned-

question-generation-ap model. This model is an answer-aware question

generation model, meaning that it requires both an answer and a context to

generate a question as opposed to just a context. In this case the claim is treated

as the context for the question and the extracted answer span is treated as the

answer.

input = “answer: {answer_span} context: {claim}”

The implementation can be seen in the code below in Figure 25:

self.question_generation_pipe = pipeline("text2text-
generation", model="mrm8488/t5-base-finetuned-question-
generation-ap", max_length=256)
for answer in claim_answers:
 question =
extract_questions(self.question_generation_pipe,
answer['focal'], claim)

 41

 self.questions.append(question)
 print("Question for answer '" + answer['focal'] + "':",
question)

Manually generate polar questions (yes/no questions)
polar_questions = extract_polar_questions(self.nlp,
self.question_generation_pipe, claim)
for polar_question in polar_questions:
 self.questions.append(polar_question)
 print("Polar question:", polar_question)
def extract_questions(nlp, focal_point, claim):
 question_generation_string = "answer: " + focal_point + "
context: " + claim
 question_generation_output =
nlp(question_generation_string)
 question =
question_generation_output[0]['generated_text'].replace("ques
tion: ", "")
 return question

Figure 25: Code implementation of question generation using extracted answer spans.

An extra “polar” question is then generated around the claim. A polar question

is a yes/no question created by rephrasing the claim. An example can be seen

below:

Claim: “Telemundo is an English-language television

network”

Polar question: “Is Telemundo an English language

television network?”

This is achieved by using dependency parsing. The sentence is pre-processed

using the spaCy model en_core_web_sm so that it contains various grammatical

annotations such as dependency tags. The claim is then split into sentences

(normally not a required step as all claims in the FEVER dataset are only one

sentence). In each sentence, if the sentence contains a root verb and the root

verb is an auxiliary verb, then the auxiliary verb is removed and added to the

start of the sentence. For example, consider the following claim:

 42

Claim: “Telemundo is an English-language television

network.”

Root Verb: “is”

Polar Question: “Is Telemundo an English-language

television network?”

If the sentence contains a root verb and the root verb contains an auxiliary verb

as a child, then the auxiliary verb is removed and added to the start of the

sentence. For example, consider the following claim:

Claim: “Telemundo has been established as an English-

language television network.”

Root Verb: “been”

Auxiliary Child: “has”

Polar Question: “Has Telemundo been established as an

English-language television network?”

If the sentence does not contain a root verb, then the claim is treated as context

for the question generation model and the answer is set to the word “No”.

input = “answer: {‘No’} context: {claim}”

The implementation for this can be seen in Figure 26 below:

def extract_polar_questions(nlp, pipe, claim):
 doc = nlp(claim)
 questions = []

 for sentence in doc.sents:
 altered = False
 for token in sentence:
 if token.dep_ == "ROOT":
 if token.pos_ == "AUX":
 # remove the auxiliary verb and add to the
beginning of the sentence
 question = sentence.text.replace(token.text, "")
 question = token.text + " " + question
 altered = True
 elif token.pos_ == "VERB":

 43

 # if there is an auxiliary verb, remove it and add
to the beginning of the sentence
 aux = [child for child in token.children if
child.dep_ == "aux"]
 if aux:
 question = sentence.text.replace(aux[0].text, "")
 question = aux[0].text + " " + question
 altered = True
 if not altered:
 input_string = "answer: " + "No" + " context: " + claim
 output = pipe(input_string)
 question =
output[0]['generated_text'].replace("question: ", "")

Figure 26: Code implementation of polar question generation.

The DPR context vector embeddings for the disambiguative documents and

documents retrieved using the Text Matching pipeline are retrieved from the

Elasticsearch database. A Haystack DensePassageRetriever is initialised using

the retrieved embeddings, at which point each question is then encoded using

the DPR model dpr-question_encoder-single-nq-base, representing the

question in a high-dimensional vector format. The closest ten context vector

representations to the question vector representation (according to dot product

similarity) within the vector space are retrieved and their dot product scores are

used as overall document scores. These documents are then passed into the

passage retriever.

The same generated questions are also used in the passage retriever to help

rank passages found inside the document text, getting the top 30 passages, then

filtering out passages that are below a dot product score of 0.7.

Justification for using Question Ranking

The idea behind using a set of questions to try and rank the documents is that

each factual claim can be checked by fully answering a set of questions centred

around key pieces of information in the claim. For example, consider the following

claim:

Claim: “Telemundo is an English-language television

network”

 44

Theoretically, the truthfulness of this claim can be assessed by answering the

following questions:

Questions: [“What language is Telemundo?”, “Is

Telemundo a television network?”]

If an evidentiary document contains information that confirms that Telemundo

is English-language, and a document contains information that confirms that

Telemundo is a television network, then the claim is fully supported. Therefore,

documents that are seen to contain the answers to these questions should be

sought after in the evidence retrieval process.

This system was thought to provide an advantage over simply just searching

for documents with the highest semantic similarity to the claim. This is because

there is an assumption that the relevant evidence documents or passages are

semantically similar to the claim itself, which is not always the case. Retrieving

passages or documents that answer specific questions might be more effective for

a range of reasons.

When searching for documents that are semantically similar to a singular

claim passage, the ranking of those documents in terms of similarity score might

not be an accurate way of ranking them in terms of usefulness to answering a

claim. This is because a claim could consist of multiple pieces of information

needing to be retrieved, and certain information may have a significantly larger

amount of semantically similar information available, meaning that there is too

much information being displayed for certain elements of the claim, but less for

other, equally important areas of the claim. For example, take the following claim

and passages:

Claim: “Telemundo is an English-language television

network”

Passages:

To fully check the claim, it needs to be ascertained what language Telemundo is

spoken in, and if Telemundo is a television network. Using the cosine similarity

 45

of the vector representations (using the sentence-transformers/all-mpnet-

base-v2 model) of each passage compared to the claim, we get the ranking shown

in Figure 27.

Figure 27: Comparison between ranking by semantic similarity and question ranking.

If we assume the cutoff point is four passages, then we essentially get four

passages conveying the information that Telemundo is a television network, and

no passages conveying what language Telemundo is spoken in. If we generate

questions around key pieces of information inside the claim, using the similarity

between the claim and the questions we observe better results.

If we take the passage cutoff point at one document per question, then we

get one document that states the language of Telemundo, and one document

conveying the information that Telemundo is a television network. Therefore, by

retrieving information that answers specific questions about the claim, the final

structure of the evidence might be more effective for a fact-checking scenario,

retrieving relevant information that may be overlooked in a situation where

questions are not generated.

We did observe positive effects when using question generation to help rank

documents. In Version 1.0 of our implementation, questions were not generated

around each claim, so instead the semantic similarity score between the claim

 46

and document texts were used to rank documents and the top ten most similar

documents were taken. In Version 1.1, we first implemented our question

generation system as a ranking system after the top ten most similar documents

were retrieved. A comparison between Version 1.0 and 1.1 in Table 3 between

systems shows that the average position of the relevant document fell in Version

1.1, meaning that the relevant document was higher up in the ranking after the

question generation ranking system was added.

Metric Version 1.0 Version 1.1

OFEVER Document Score 74.01% 75.14%

Average Execution Time 28.30s 39.04s

Average Position of Correct Document 10.00 7.02

Table 3: Comparison between Version 1.0 and 1.1 showing the effectiveness of

ranking documents by how well they answer probing questions.

Justification for Models Used

The t5-base-finetuned-question-generation-ap model was used for

question generation and the t5-small-answer-extraction-en model was used

for extracting answers.

The t5-base-finetuned-question-generation-ap model was observed to

produce higher quality questions than the t5-base-question-generator model,

which was the other model that we experimented with. The t5-base-question-

generator model made by fine-tuning the T5 base model with QA datasets such

as SQuAD (see 2.5.2), CoQA and MSMARCO to generate questions, however

experiences some issues when confronted with short contexts (iarfmoose, 2024),

sometimes generating incoherent text. This proved to be problematic as input

claims were used for our contexts, which were only ever one short sentence long.

The t5-base-finetuned-question-generation-ap model was fine-tuned using

only the SQuAD dataset and does not experience this same effect when using

short sentences. This effect can be seen when using a claim from the FEVER

dataset to generate a question using the t5-base-question-generator model

(see Figure 28) and when using the t5-base-finetuned-question-

generation-ap model (see Figure 29).

 47

Figure 28: Example output of t5-base-question-generator using claim from

FEVER dataset.

Figure 29: Example output of t5-base-finetuned-question-generation-ap

using claim from FEVER dataset.

 48

Justification for Polar Questions

Polar questions were appended to the question set for ranking to produce

questions for claims that only had one piece of key information extracted. For

example, consider the claim from the FEVER dataset:

Claim: “There is a capital called Mogadishu.”

The only key text that can be extracted from the claim would be the word

“Mogadishu”, however using the word “Mogadishu” as the answer to the question

returns the following:

Answer: “Mogadishu”

Context: “There is a capital called Mogadishu.”

Question: “What is the capital of the city?”

This question is not particularly useful when retrieving documents as there are

many different documents, not related to Mogadishu, that provide adequate

answers to the question. Instead, we generate a “polar question”:

Answer: “No”

Context: “There is a capital called Mogadishu.”

Question: “Is there a capital called Mogadishu?”

This question is more useful as it directly targets documents relating to

Mogadishu. Polar questions are less successful at retrieving relevant documents;

however, they are more effective than not including them at all in the retrieval

process, therefore they are kept in the final implementation (see Table 4).

Metric Final Version

(with polar

question)

Final Version

(without polar

question)

Document Recall 77.36% 76.54%

Document Precision 6.24% 8.23%

Document F1 11.55% 14.87%

OFEVER Document Score 79.66% 78.53%

Average Execution Time 31.75s 31.54s

Table 4: Comparison of Final Version with polar question and without polar question.

 49

3.3.9 Dense Passage Retrieval

Figure 30: Dense Passage Retrieval Diagram.

Implementation

A Dense Passage Retriever is used inside the document retrieval module to

retrieve a set of documents that answer each question. The DPR takes in a

question vector and a set of context vectors, it then performs dot product

comparison between each set of context vectors with the question vector to find

the closest contexts. In our scenario, two different specialised models are used to

convert questions and contexts into high-dimensional vector format.

To prepare the document text to work with the DPR system, the

Elasticsearch database needed to be loaded with the document context vectors

before using the DPR. To achieve this, the Elasticsearch database needed to be

initialised with an empty embeddings field. The Haystack framework was used

in this scenario to get each document inside the Elasticsearch database,

converting it to an ElasticsearchDocumentStore object so that it could be used

by Haystack’s DensePassageRetriever class. A DensePassageRetriever object

 50

was then initialised with the dpr-question_encoder-single-nq-base to encode

questions into vectors and the dpr-ctx_encoder-single-nq-base to encode

document texts. After this, all 5.45 million document texts in the Elasticsearch

database were converted into vector representation using dpr-ctx_encoder-

single-nq-base. As this particular stage could not be run on the system

specification listed in 3.1.1, a Google Colab instance needed to be used with a

V100 GPU. The process of loading the vectors into the Elasticsearch took a total

of 39 hours and the embeddings take up a total of 80GB.

Connect to Elasticsearch
document_store = ElasticsearchDocumentStore(
 host=os.environ.get("ES_HOST_URL"),
 port=os.environ.get("ES_PORT"),
 scheme=os.environ.get("ES_SCHEME"),
 username=os.environ.get("ES_USER"),
 password=os.environ.get("ES_PASS"),
 index="documents",
 embedding_field="embedding",
 embedding_dim=768,
)
Load Dense Passage Retriever
retriever = DensePassageRetriever(
 document_store=document_store,
 query_embedding_model="facebook/dpr-question_encoder-
single-nq-base",
 passage_embedding_model="facebook/dpr-ctx_encoder-single-
nq-base",
 use_gpu=False,
 embed_title=True,
 batch_size=2,
)
Load the document store
document_store.update_embeddings(
 retriever=retriever,
 index="documents",
 update_existing_embeddings=False
)

Figure 31: Code implementation of loading context embeddings for DPR into

Elasticsearch database.

 51

After these embeddings were loaded, the DPR document retrieval system could

then be used. After this the disambiguative documents and the documents

retrieved using the Text-Matching pipeline then had their context embeddings

retrieved from the Elasticsearch database. At this stage there is a limit of around

1000-3000 documents, although normally only around 20 documents get passed

into the DPR. Each question is then iterated through and encoded into a high-

dimensional vector using the dpr-question_encoder-single-nq-base using

Haystack’s DensePassageRetriever class, which then calculates the dot product

score between the documents and each question. For each document the highest

dot product score amongst each question is kept as its final document score, and

a final filter is applied, removing any documents that contain below a 0.65 dot

product score. This process can be seen in Figure 32.

For doc in both disambiguated and textually matched docs,
add to doc store
doc_store = listdict_to_docstore(disambiguated_docs +
textually_matched_docs)

Initialise retriever
print("Initialising DPR")
retriever = DensePassageRetriever(
 document_store=doc_store,
 query_embedding_model="facebook/dpr-question_encoder-
single-nq-base",
 passage_embedding_model="facebook/dpr-ctx_encoder-single-
nq-base",
 use_gpu=False,
 embed_title=True,
 batch_size=2,
)
Retrieve docs for each question keeping the highest scoring
docs
print("Retrieving documents for each question")
for question in tqdm(self.questions):
 results = retriever.retrieve(query=question)
 for result in results:
 id = result.id
 score = result.score

Figure 32: Code implementation of performing Dense Passage Retrieval in document

retrieval module.

 52

Justification

The decision was made to use Dense Passage Retrieval as it was particularly well

suited towards assigning scores for the answerability of text based on a set of

questions, it also maintained a good speed to performance balance. As the system

was based around assigning answerability scores (essentially performing

extractive QA on our document corpus) there were multiple different options,

however Meta’s Dense Passage Retriever consistently outperforms other retrieval

methods such as BM25, GraphRetriever, PathRetriever and ORQA on QA

datasets such as NQ, TriviaQA, WQ, and TREC, therefore it was considered the

best option for this task. Once built, the DPR also boasts a higher runtime

efficiency than other retrieval methods such as Lucene (Karpukhin, et al., 2020),

which is also crucial as our evidence retriever must work on the limited

specifications listed in 3.1.1.

The reason Haystack was used as the DPR framework was due to its

integration with Elasticsearch. Hugging Face’s DPR framework was also

considered. Before implementing the DPR, the decision to use Elasticsearch as a

data store was already established. Haystack’s DPR works by using one of many

DocumentStore objects, and the Haystack framework includes an easy conversion

from an Elasticsearch database with embeddings into an

ElasticsearchDocumentStore, which acts as a DocumentStore object for

Haystack’s DPR, making it relatively simple to implement.

The reason the dual encoder pair of models dpr-question_encoder-single-

nq-base and dpr-ctx_encoder-single-nq-base were used in our

implementation was because they were specifically designed with QA tasks in

mind. The dpr-question_encoder-single-nq-base and dpr-ctx_encoder-

single-nq-base have parameters that are fine-tuned in such a way that it

represents question vectors in a similar vector space to context vectors, making

the dot product higher for relevant question answer pairs.

The context embeddings were pre-encoded so that they did not have to be

encoded at runtime. As there tends to be around 20 document texts, encoding

these documents at runtime takes a significant amount of time compared to

simply retrieving them.

 53

3.3.10 Relevancy Classification Model

Implementation

The passage retrieval module contained two completely different approaches,

with the final system opting to use a fine-tuned DistilBERT model that classifies

whether a sentence is relevant to a claim. This model was trained using data

specifically from the FEVER dataset.

First each document text retrieved using the passage retriever was split into

sentences using spaCy’s sentence splitting function. To do this document text

was encoded using en_core_web_sm, then split using the .sents method. Each

sentence was then formatted to work with the DistilBERT model by adding a

separation token and concatenating it with the claim. The formatted text is then

tokenised with the DistilBERT tokeniser and then passed into the relevancy

classification model as shown in Figure 33.

doc = self.nlp(evidence_text)

evidence_sentences = []
for sentence in doc.sents:
 sentence = sentence.text
 input_pair = f"{claim} [SEP] {sentence}"
 result =
self.relevance_classification_tokenizer_pipe(input_pair)

Figure 33: Code showing the formatting of document texts into passages to be

classified for relevancy.

The model outputs either a label of “LABEL_1” if the sentence is relevant to a

claim or a label of “LABEL_0” if a sentence is not relevant to the claim, alongside

its confidence score. The sentence is only kept if it gets labelled with a “LABEL_1”.

Training

To train the relevancy classification model a random selection of 10000 claims

from the FEVER dataset alongside their evidence documents were retrieved. The

claims contained one or more evidence sentences from those evidence documents.

To help the model understand different types of irrelevant documents, some

sentences from completely random documents were retrieved as well as some

irrelevant sentences from the same document.

 54

Let:

𝑟 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑖 = 𝐼𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑖 = 𝐼𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑡𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

The optimal ratio found was:

1𝑟 + 2𝑖 + 2𝑖

A single sample of this dataset can be seen in Figure 34:

Figure 34: Sample row of generated dataset for relevancy classification model.

After the 10000 training samples were generated, the data was split into a

training, validation, and test set in the ratio 8:1:1. Therefore, the training set

contained 8000 samples, the validation set contained 1000 samples and the test

set contained 1000 samples. The model was fine-tuned using Hugging Face’s

Trainer() class, initialised with the optimal hyperparameters shown in Table 5.

 55

Hyperparameters Value

Epochs 3

Batch Size 24

Warmup Steps 500

Weight Decay 0.01

Learning Rate 1e-5

Train Test Split 8:1:1

Dataset Size 10000 samples

Base Model distilbert/distilbert-base-uncased

Table 5: Fine-Tuning Hyperparameters.

As the training could not be performed on a laptop, a Google Colab instance was

initialised with a Tesla V100 GPU and 50GB of RAM. Overall, the training

process took around 1 hour, however, began to overfit in the third epoch. The

loss metrics can be seen in Figure 35.

Figure 35: Loss metrics for training of relevancy classification model.

Justification

Several decisions had to be made regarding the size and content of the training

data. The reason why we chose to include irrelevant sentences from the same

document as well as irrelevant sentences from random documents in the training

dataset was because the model needed to be able to receive sentences that come

from the same document as well as documents that may talk about a completely

unrelated topic. Sentences from the same document enable the model to make

fine distinctions as to which sentences are relevant to the claim, and the inclusion

of irrelevant sentences from random documents helps to emulate the format that

 56

the model would receive data in. A 1:2:2 split was used as a ratio for this data

as it ended up returning a model with the highest accuracy, although 1:1:1, 1:3:3

and 1:1:2 splits were also used.

In the end, a dataset size of 10,000 was the most effective at training the

model as datasets of a smaller size (sets of 1000 and 5000 claims were tested) did

not provide the model with enough data to learn if a sentence was relevant to a

claim. Datasets that were larger (a set of 20,000 claims was tested) did not

provide a significant increase in performance over the 10,000-claim set but did

double the training time.

A DistilBERT model was chosen for this task primarily due to its high speed

compared to a traditional BERT model or a RoBERTa model, which was crucial

for this project to run in a useful timeframe with the hardware limitations, and

its ability to perform at a similar effectiveness to a traditional BERT model.

Different combinations of hyperparameters were used to train this model, as

initially the model was overfitting. Eventually it was found that reducing the

learning rate from 1𝑒 − 4 to 1𝑒 − 5 reduced the overfitting significantly over the

3 epochs.

We also chose to use data directly from the FEVER dataset as opposed to

choosing data from another dataset as this meant that the model was accustomed

to the specific claim and sentence format in our dataset. Our dataset contains

short factual claims that need to be matched with varying length sentences,

therefore it seemed important for our model to be fine-tuned with this structure

in mind. It was also assumed that the model might be able to pick out unseen

nuanced properties within the dataset that may not be immediately obvious.

It is also worth mentioning that other methods were used in different versions

for passage retrieval that were found to be less effective. For example, in Version

1.6 and 1.7 we used a dual-pipeline approach, containing one pipeline that was

focused on lexical similarity, splitting document texts into sentences and ranking

using BM25 scores, and another pipeline that used a QA reader model to retrieve

passages that contained answers to the questions generated in the document

retrieval step. However, this approach had a significantly longer runtime as well

as worse recall and a more-or-less identical precision, therefore it was substituted

entirely for the relevancy classification model (see Table 6).

 57

Metric Final Version

(relevancy

classification)

Version 1.7 (dual

pipeline)

Passage Recall 60.81% 47.90%

Passage Precision 60.28% 60.86%

Passage F1 60.56% 53.61%

OFEVER Passage Score 59.86% 52.27%

Average Execution Time 31.75s 36.24s

Table 6: Comparison between relevancy classification and dual pipeline approaches

to passage retrieval.

3.3.11 Final Ranking Using Semantic Similarity

The final step of the passage retrieval was to rank the remaining passages.

Results from the relevancy classification model produced rankings that were often

extremely close together, with most passages retrieved having scores that would

only vary between the range 0.9991 − 0.9999, and often the order did not

necessarily put the passages most relevant to the claim first. Therefore, a simple

semantic similarity calculation was performed between the input claim and each

of the remaining passages. To perform this, Sentence Transformer’s all-mpnet-

base-v2 was used to encode both the claim and the passages. Finally, all passages

that contained a semantic similarity score of below 0.7 were removed, and the

passages were sorted by this final score. The implementation of this can be seen

in Figure 36.

Setup similarity model
self.sim_model = SentenceTransformer('sentence-
transformers/all-mpnet-base-v2')
def get_semantic_sim(self, claim, sentence):
 embeddings = self.sim_model.encode([claim, sentence])
 return util.cos_sim(embeddings[0], embeddings[1]).item()

Figure 36: Code implementation of final semantic similarity ranking.

Justification

The all-mpnet-base-v2 model was used to rank the similarity of passages to

the claim as it achieves the highest average performance out of all the Sentence

 58

Transformers models for sentence embeddings and semantic search. Although it

does have a comparatively low speed compared to some of the other models, this

was not considered an issue as at this stage of retrieval most of the passages will

have been filtered out, leaving a small number of remaining passages. These

results can be seen in Table 7.

Table 7: Sentence Transformers model comparison.

3.3.12 Web Application

Implementation

The Flask framework, alongside simple HTML, CSS, and JavaScript was used to

create a homepage, a loading page, and a results page for the evidence retriever.

The homepage was designed to house a singular text box where the user could

enter their claim, and some informational sections explaining what the system

does and how to use it. As the system can take around 30 seconds to load

evidence for a single claim, a loading page was implemented to show the user

what stage the retriever was at in the evidence retrieval process. Finally, the

results page shows the user the claim, the evidence set, and a final verdict for

whether the claim is supported, refuted, or does not contain enough evidence.

The homepage design can be seen in Appendix C. it contains a text form that,

on submit, saves the text entered inside the text field to a session variable, then

redirects the user to the /demo route (shown in Figure 37). This route then

retrieves the claim stored in the session variable, it generates a random unique

 59

ID and starts a thread with that ID and the claim. The thread then executes the

evidence retrieval process.

@app.route("/demo")

def demo():

 claim = session.get('claim', 'Not specified')

 task_id = str(uuid.uuid4())

 session["task_id"] = task_id

 Thread(target=background_task, args=(task_id, claim)).start()

 return render_template("demo.html", claim=claim, task_id=task_id)
Figure 37: /demo route.

The website is able to print out progress updates from the evidence retriever by

setting up a route with the specific ID that returns a JSON object containing

progress updates.

@app.route("/progress/<task_id>")
def progress(task_id):
 return jsonify(progress_store.get(task_id, None))

The evidence retriever runs the log_progress() function shown in Figure 38

whenever a significant progress update happens, for instance, if the passage

retrieval has started.

def log_progress(task_id, log):
 if task_id:
 if task_id not in progress_store:
 progress_store[task_id] = {"status": "in progress",
"log": []}

 progress_store[task_id]["status"] = "in progress"
 progress_store[task_id]["log"].append(log)

Figure 38: log_progress() function.

The loading page contains a JavaScript script that sends a request to the progress

update route every second, the information retrieved from this route is then

displayed with some formatting to appear as shown in Appendix D.

After the evidence retrieval process is finished the retrieved evidence

documents and passages are inserted into a prompt, which is sent to the

mistral-small-latest large language model via the Mistral API. The prompt

appears as follows:

 60

 prompt = "Is the following claim supported, refuted

or not enough evidence based on the evidence listed below?

The evidence is to be taken as completely factual.

Claim: {claim}

Evidence: {evidence_passages}”

The retrieved documents and passages, as well as the text generated by

mistral-small-latest are packaged into a JSON object which is then sent to

progress route alongside a status update telling the website that the retrieval

process has finished. These are then formatted and displayed in the results page

as seen in Appendix E.

The results page splits the evidence into retrieved evidence documents that

contain retrieved passages, and documents that do not contain any passages

retrieved. The documents with evidence passages are displayed first in order of

the passage score, the documents without evidence passages are displayed

afterwards in order of their document score. Each document is split, displaying

all the evidence passages it contains, the passage score, and the document score.

The document text is hidden by default to conserve space (see Figure 39);

however, the user can click a button to expand the document box, showing the

full document text. In the document text, if the document contains an evidence

passage, that passage is highlighted in the text as shown in Figure 40.

Figure 39: Results page document box with hidden document text.

 61

Figure 40: Results page document box with expanded document text.

Justification

Flask was chosen as the web framework because the actual complexity of the

web application was relatively low. Flask is a lightweight, micro web framework

for Python. As such the web application was well suited to Flask as the evidence

retrieval system was already implemented in Python, and the design of the web

application was not complex, only requiring three pages therefore only basic web

functionality, such as the setup of routes, was needed.

After constructing the website, it was theorised that adding the extra step of

using the retrieved evidence to help make a prediction of the veracity of the claim

would not take a long time to implement if a large language model was used. It

was thought that it would significantly improve the user benefit of the system as

the user could be told explicitly if there was enough evidence to back up their

input claim, helping them make more informed decisions and not jumping to the

conclusion that evidence either supported or refuted their claim unless verified

by the large language model. Additionally, using an LLM to predict the veracity

of the claim would make it clearer as to how our evidence retrieval system would

work as a step in the automated fact-checking pipeline in the wider context of a

full fact-checking system.

 62

The mistral-small-latest was used for as it was easily accessible using the

Mistral API, as running a large language model locally on the specifications listed

in 3.1.1 was unfeasible. The small model was used for the task of classifying

whether the claim was supported by the evidence as it was thought to be a

relatively simple classification task, therefore not requiring a more complex

model. As a result, the runtime speed was also quicker. It is worth mentioning

that evidence retrieval, not veracity prediction, was the focus of this project

therefore a custom system was not implemented and the options for veracity

prediction were not studied in depth.

 63

4 Results and Evaluation

In this section, first the strategy for our evaluation will be explained, detailing

how we evaluated each specification, justifying which metrics to use and how

they were calculated. Then the whole system will be evaluated according to these

metrics. Key elements of the system will also be evaluated using comparative

metrics.

4.1 Metrics

To evaluate each of the specification requirements, multiple separate evaluation

metrics were chosen:

Recall

Recall is the measure of the fraction of relevant instances retrieved (Powers,

2020). It can be useful to help find out what proportion of relevant instances

were actually retrieved, and what proportion of relevant instances were missed.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

In the context of document retrieval, the recall of the system can be determined

as follows:

𝑟 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑛 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑛𝑜𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑟

(𝑟 + 𝑛)

In the context of sentence retrieval, the recall of the system can be determined

as follows:

𝑟 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑛 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑟

(𝑟 + 𝑛)

Precision

Precision is the measure of relevant instances among all retrieved instances

(International Organization for Standardization, 2023). It can be useful to try

and determine what proportion of positive retrieved instances were indeed correct

and what proportion of retrieved instances were incorrect.

 64

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐴𝑙𝑙 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

In the context of document retrieval, the precision of the system can be

determined as follows:

𝑟 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑖 = 𝐼𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟

(𝑟 + 𝑖)

In the context of sentence retrieval, the precision of the system can be determined

as follows:

𝑟 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑖 = 𝐼𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟

(𝑟 + 𝑖)

F1

The F1 score is a metric calculated from the precision and recall of a test,

representing the harmonic mean between those two metrics. As a result, the F1

score is often used as a metric to measure how well a system balances both

precision and recall. It can be calculated as follows:

𝐹 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

F1 scores range from 0 to 1, where the lowest possible value is 0 whereas a system

with perfect precision and recall achieves a score of 1.

Oracle Experiments

Oracle evaluations are measures designed to analyse the performance of each

component in a system by assuming each other component in the system knows

the correct answer for every instance in the dataset. An “oracle” is an idealised

component that always gives the correct answer.

In the context of an evidence retrieval system, two separate components can

be the document retrieval, and the passage retrieval. When calculating the oracle

accuracy of the document retrieval, the “oracle” is the passage retrieval

component, which would be assumed to have 100% score. Therefore, only the

score of the document retrieval component needs to be recorded. If the document

 65

retrieval component achieves a score of 90% then the oracle score of the system

is said to be 90%.

FEVER and OFEVER

The OFEVER score is short for Oracle-FEVER score and is used to evaluate the

effectiveness of an individual module at completing the FEVER shared task. It

is done so by assuming each other section of the system is an “oracle”. The

FEVER shared task requires the submission of an evidence set, that justifies the

label of each claim, each set being the minimum set of sentences that fully

support the labelling of the claim. Correctly labelled claims that lack the

complete evidence set do not receive a correct score. For data that contains

multiple evidence sets, only one set is needed to achieve a correct FEVER score

(Thorne, et al., 2018). It is worth noting that, for the task presented in this

paper, the labelling of evidence is not required so any evidence set will be assumed

to be correctly labelled when evaluating the quality of the evidence retrieval

system.

Nielsen’s Ten Usability Heuristics

The user-friendliness of the website will be assessed using Nielsen’s Ten Usability

Heuristics (Nielsen, 1994). These are a widely accepted set of heuristics,

developed by Jakob Nielsen, that provide a broad set of principles for interface

design and are particularly useful for identifying usability issues in web interfaces.

They can be found in Appendix F.

4.2 Strategy

A strategy was developed to test each one of the specifications using the set of

evaluation metrics mentioned in 4.1 as well as some more commonly used metrics.

Retrieval of Evidence – To evaluate the overall retrieval of evidence, the

combined recall, precision, F1, and OFEVER metrics were calculated with both

the document and passage retrieval modules working in combination. This means

that evidence can only be regarded as correct if the correct passage within the

document is found, not just the correct document. A single claim could have

multiple evidence document-passage pairings; therefore, a point was given for

 66

recall for each one retrieved. When calculating precision, only incorrect

document-passage pairings were regarded as false positives. We also evaluate our

system in comparison to two other implementations, the FEVER baseline and

the Nie et al. system to benchmark the relative performance of our system against

the established baselines and competitors for this task.

Retrieval of Documents – To evaluate how effective the document retrieval

module was, we calculated the recall, precision, F1, and OFEVER of the

document retriever only. An evidence document was treated as a document that

contained an evidence passage for a claim. A single claim could have multiple

evidence documents; therefore, a point was given for recall for each one retrieved.

Like the Retrieval of Documents specification, we also benchmark our system

compared to the FEVER baseline and the Nie et al. system.

Retrieval of Passages - To evaluate how effective the passage retrieval module

was, we calculated the recall, precision, F1, and OFEVER of the passage retriever

only. This meant that if the passage retriever received an irrelevant document,

all results from this document would be discarded as the passage retriever has

no way of retrieving the relevant passage from an irrelevant document. Only

incorrect document-passage pairings that were within a relevant document to the

claim were considered as false positives when calculating precision. Like the

Retrieval of Documents specification, we also benchmark our system compared

to the FEVER baseline and the Nie et al. system.

Presentation of Evidence – To evaluate the user-friendliness of the website

design, the website was evaluated against Nielsen’s Ten Usability Heuristics.

Performance of System - The system was run on the device specifications

listed in Section 3.1.1, and the average runtime was calculated.

Test Dataset Creation

To run experiments with the evaluation metrics, a test dataset needed to be

created. The entire FEVER dataset contains 184,445 claims, and a single run of

any version of the system on the hardware specifications listed in Section 3.1.1

normally took between 20 and 60 seconds. Assuming the system only took 20

seconds to run, it would take almost 1025 hours to run on all claims. Therefore,

the test set focused on claims that contained evidence within the FEVER dataset,

 67

so any claims that did not have any/full supporting evidence were removed. A

random seed was created and using the seed 200 claim ids were selected from the

dataset. These same 200 claims were run through each version of the system

whenever a significant change occurred, and these 200 claims were also used in

the final evaluation.

It was thought that 200 claims were a reasonable number as on most versions

of the system it took from 1-3 hours to fully run, which was not considered

excessive, while maintaining a diverse enough range of claims to accurately

represent the entire FEVER population of claims. The claims were randomly

chosen for the following reasons:

 Given the subset size was sufficiently large, it helped make sure the claim

and evidence passage structure were theoretically representative of the

whole dataset. For example, some claims require the retrieval of one

passage, however some require the retrieval of over four passages, a

random selection ensure that the distribution of claims with one or four

passages are the same distribution as found in the original dataset.

 Alternative strategies such as representative sampling is excessively time-

consuming and may induce bias. Claims and evidence passages in the

FEVER dataset cover a range of topics, vary in size, and possess many

other unique properties. Trying to accurately work out the distribution

of these properties in the FEVER dataset would be an inefficient use of

time, trying to sample these properties could be difficult and time-

consuming and may be prone to including sampling bias.

The FEVER dataset does contain a test dataset; however, we chose not to use

this dataset as it did not come with claim, evidence pairings. Instead, it just

came with a list of claims, requiring a custom module to be imported to mark

the claims. Therefore, we decided to create our own marking script. It is

important to bear in mind that, when comparing our system to the FEVER

baseline and the implementation made by Nie et al., we are not performing a

comparison on the same set of data as they were tested using the complete official

test dataset, whilst we are only using 200 random samples from the concatenated

training and development datasets. That being said, the results obtained from

our analysis should proportionately reflect the results that would be obtained if

 68

we used the FEVER test dataset. The comparison is being made to help get an

idea of how our system performs compared to others, but for an exact comparison

a more controlled experiment would need to be made.

4.3 System Results and Evaluation

Metric Final

Version

FEVER

Baseline

Nie et al.

Document Recall 77.37% - 89.23%

Document Precision 6.24% - 51.04%

Document F1 11.55% - 64.94%

Passage Recall 60.84% - 86.79%

Passage Precision 60.29% - 39.39%

Passage F1 60.56% - 51.58%

Combined Recall 69.27% - -

Combined Precision 11.13% 11.28% 42.27%

Combined F1 19.18% 18.26% 52.96%

OFEVER Document Score 79.66% 70.20% 92.82%

OFEVER Passage Score 59.86% 62.81% 91.19%

OFEVER Combined Score 35.59% - -

Average Execution Time 31.75s - -

Table 8: Comparison between our final system compared to the FEVER Baseline (k

= 5) and Nie et al. (KM + dNSMN, sNSMN w. AS) implementations that achieved

highest FEVER scores tested on the test dataset.

Retrieval of Evidence

Our full evidence retrieval pipeline achieved a recall of 69.27% within our chosen

test set. This means that out of all the relevant document-passage pairings, our

retriever was able to retrieve a correct document and passage 69.27% of the

time. This is a solid foundational recall as it means that our system retrieves at

least a single correct evidence passage for 69.27% of claims.

Despite achieving a relatively high recall, the combined OFEVER score was

only 35.59%, meaning that the system retrieved a complete set of correct

 69

evidence documents and passages only 35.59% of the time. This could indicate

that our system is effective at retrieving relevant documents and passages,

however, it is not always effective at retrieving all necessary evidence to support

or refute a claim comprehensively. The discrepancy between the high recall and

lower OFEVER score suggests that there are still improvements to be made in

ensuring the completeness and precision of the evidence gathered. One possible

reason for this discrepancy is that our system performs well on claims that

contain multiple “easy” evidence passages, explaining why the recall is high, but

worse on claims that only require the retrieval of one passage that is more

semantically difficult to obtain, explaining the lower OFEVER score.

Our system also achieved a combined precision of 11.13%, leading the

combined F1 score to be 19.18%. These results are to be expected, as we designed

our system with the intention of displaying an array of potentially relevant

passages to the user, with the user making the final decision which passages were

relevant to their claim, therefore we decided to prefer a passage to be displayed,

even if it may run the risk of not being relevant as opposed to potentially not

displaying relevant passages. Our combined precision and F1 are comparable to

the FEVER baseline, which achieved a combined precision of 11.28% and a

combined F1 score of 18.26% but was significantly worse than the system made

by Nie et al. which achieved a combined precision of 42.27% and a combined F1

of 52.96%. This does show that there is some room for improvement in narrowing

down the retrieved passages.

Retrieval of Documents

Our document retriever module achieved a 77.37% recall, meaning that it was

able to retrieve a correct document for a given claim 77.37% of the time. This

was around a 12% lower recall than the final system made by Nie et al., which

leaves some room for improvement, however a lower recall was expected given

that we did not use a meticulously crafted rule-based span extraction system,

opting to use an NER-base system instead. We could not find any document

recall scores for the FEVER baseline system to compare our implementation to,

however, it is likely that our system outperformed the FEVER baseline regarding

 70

document retrieval as we achieved a higher OFEVER document score than the

FEVER baseline (79.66% vs 70.20%).

Our system achieved a 79.66% OFEVER document score, meaning that in

79.66% of claims, all relevant documents were retrieved, which 9% increase over

the FEVER baseline, however it is 13% lower than the Nie et al system.

Several improvements can be made that may be able to increase the recall of

this system. The first is through creating a custom model fine-tuned on FEVER

data to extract spans to perform searches. Our system sometimes does not extract

the correct keyword span or extracts too many different keyword spans. The

second improvement can be made by simply fine-tuning the question generation,

or answer extraction models that we use. Sometimes the system will generate a

nonsensical question, which can be either caused by an irrelevant entity being

extracted, or by the question generation model itself. To solve this problem the

answer extraction model could be fine-tuned using claims from this dataset,

paired with document titles found in the claim, and the question generation

model could be fine-tuned with a set of manually approved questions (generated

from claims in the FEVER dataset) and claims as context, ensuring that the

model is accustomed to receiving short claims as context.

Our document retrieval achieved a relatively low precision and F1 score,

however, as stated previously we designed our system with the intention of

favouring a wider catchment of potential evidence.

Passage Retrieval

Our passage retrieval system achieved a surprisingly high precision and F1 score,

whilst maintaining a lower recall value. Our passage recall was 60.84% which

was significantly lower than the system made by Nie et al. which had a recall of

86.79%. It is fairly likely that our passage retriever’s recall was a similar value

to the FEVER baseline, as OFEVER passage scores were comparable (59.86%

compared to 62.81%). This meant that the passage retrieval system was

identifying too many passages as irrelevant, when in fact they could be relevant.

Our passage retriever received higher F1 and precision scores than the system

made by Nie et al., and the FEVER baseline. Our precision was 60.29% compared

to the system Nie et al. system which had a 39.39% precision, which indicates

 71

that our system made less incorrect predictions. This could be because we were

classifying less passages altogether as relevant (shown in our lower recall),

however we still achieve almost a 9% better F1 score, indicating that the balance

of recall and precision of our passage retriever is better in these experiments. It

is worth noting that, despite our high F1 and precision, due to the recall being

lower, we achieved a slightly lower OFEVER passage score than the FEVER

baseline, and over a 30% worse passage score than the system made by Nie et al.

Presentation of Evidence

We evaluated our final website against Neilsen’s Ten Usability Heuristics.

1. Visibility of System Status – Our website kept the users informed about

the status of the system within a reasonable amount of time by including

a loading screen. This screen provides updates every few seconds of the

status of the retrieval process. The average execution time is around 30

seconds, therefore we found it necessary to include this screen.

2. Match Between the System and the Real World – Our website includes

multiple sections in the homepage detailing the retrieval process, while

certain jargon must be used such as “dense passage retrieval” or “named

entities”, the section aims to help the user understand any such jargon.

The number of technical terms used is also kept to a minimum.

3. User Control and Freedom – If the user accidentally enters a claim and

wants to go back and stop the retrieval process, they can click an exit

button (pictured in Appendix D), taking them back to the homepage,

allowing users to feel as if they remain in control of the system.

4. Consistency and Standards – The website is not overly difficult to

understand in the first place, however we use a layout inspired by a

Google search, containing a single text field with an enter button on the

homepage, and displaying any results in a list format.

5. Error Prevention – We did not encounter any errors when running the

website, this is probably due to its very simple design and functionality.

6. Recognition Rather than Recall – All available actions are made visible

to the users at any point. These actions only include submitting a claim,

cancelling the retrieval, and expanding or collapsing document text.

 72

7. Flexibility and Efficiency of Use – No shortcuts were added for the expert

user, however given the limited amount of features in the website it was

not considered necessary to add any expert shortcuts.

8. Aesthetic and Minimalist Design – Our website has a simple colour

scheme, only containing black text on a white background with some red

accented blocks as to keep the amount of visual noise low. In addition,

each page only contains the content that is necessary for the user to see.

For example, in the results page it does not contain excessive information

about how the process works, instead it only focuses on displaying the

claim, passages, and documents. The whole design is primarily structured

to let a user enter a claim and see associated evidence.

9. Help Users Recognize, Diagnose, and Recover from Errors – We did not

encounter any errors when using the website. There is very little scope

for errors to occur given the limited functionality.

10. Help and Documentation – The homepage contains multiple dedicated

sections explaining to the user how the evidence retrieval process works,

and how to use the website.

Performance of System

Our goal of achieving an evidence retrieval that runs on low hardware

specifications in reasonable time appears to have been achieved. On average, for

the 200 claims tested, the system took around 30 seconds to complete execution.

This would be considered on the upper bound of reasonable time, however no

reductions needed to be made to the original dataset and the system is able to

search all 5.45 million Wikipedia extracts.

It is worth noting that using a low-end GPU would likely make the system

perform significantly better as most of the runtime is taken up through NLP

tasks such as extracting entities from the text, generating questions, and

performing embedding similarity calculations. All these aspects can be

significantly improved by using a low-end GPU instead of the CPU (BUBER &

DIRI, 2018).

 73

5 Conclusion

This project, ESOTERIC, demonstrates the feasibility of creating an automated

evidence retrieval system as a sub-module of an automated fact-checking system.

It retrieves evidence from the entire FEVER document corpus, as to let the

system receive a wide catchment of potential users due to its general

applicability, promoting the general use of automated fact-checking systems. It

does so on consumer hardware, democratising the ability to perform accurate

fact-checking, with the evidence retrieval able to be executed entirely on a CPU,

within usable runtime of around 30 seconds. It also wraps the evidence retrieval

system inside a simple web application as a demonstration as to how this evidence

retrieval system could be used as part of a full automated fact-checking process,

allowing internet users immediate access to fact-checking facilities which in turn

aims to curb the growing pertinence of online misinformation.

When tested on a randomly sampled small subset of claims, ESOTERIC is

able to recall 69.27% of the target evidence document-passage combinations. Our

document retriever module recalls 77.37% of relevant evidence documents and

our passage retriever module recalls 60.84% of relevant evidence passages within

those documents. Notably, when tested, our passage retriever module also

achieves an F1 score of 60.56%. It is hoped that the relative success of this project

will introduce another system to the broader academic field of fact-checking,

thereby enhancing the tools available for combatting misinformation.

 74

6 Future Work

While our system performed well in some areas, the improvements below are

expected to enhance its overall performance.

Our final system makes use of a dense passage retriever to help rank how

well the passages answer key questions about the input claim. This dense passage

retriever has the ability to be fine-tuned to a specific dataset, normally resulting

in a higher performance. We do not fine-tune the dense passage retriever as it

was not achievable within the given time constraints. However, the dense

passage retriever can be fine-tuned by first taking the input claims, then

generating a set of “gold standard” manually approved generated questions. Then

finding the answer to those questions in the document text, noting the passage,

and manually approving those answers. This data can be formatted as follows to

fine-tune the dense passage retriever (Haystack, 2023):

 {

 "dataset": str,

 "question": str,

 "answers": list of str

 "positive_ctxs": list of dictionaries of format {

 'title': str,

 'text': str,

 'score': int,

 'title_score': int,

 'passage_id': str

 }

 "negative_ctxs": list of dictionaries of format {

 'title': str,

 'text': str,

 'score': int,

 'title_score': int,

 'passage_id': str

 }

 "hard_negative_ctxs": list of dictionaries of format {

 'title': str,

 'text': str,

 'score': int,

 'title_score': int,

 'passage_id': str}

 75

 }
Our system makes use of a question generation system, however, does not filter

or rerank these questions. As a result, some questions generated are nonsensical.

The questions generated are then used to score documents on how well the

document text answers these questions. In cases where poor questions are

generated, this can artificially raise the score of irrelevant documents. To improve

this, a question reranking model could be trained to assign a predictive score to

questions to indicate the quality of the question (regarding how useful it is

expected to be to retrieve evidence). This score could be used to filter out bad

questions, or alternatively, it could be used as a weight so that documents

retrieved using bad quality questions are given a lower final document score.

Additionally, we use the concatenation of an NER model and an answer

extraction model to extract keywords from the claim. These models were not

designed to extract keywords from short input claims. Training a custom model

for keyword extraction from claims would likely improve performance as it would

reduce the number of useless keywords being extracted. For example, the model

will sometimes extract articles, leading to useless questions being generated, and

making searching through document text slower as well as returning more

irrelevant documents. This could be done by getting a set of claims found in the

FEVER dataset, running them through our keyword extraction system, and

removing “useless” keywords generated. Then this could be used as a dataset to

fine-tune a language model.

A question generation model that generates questions without needing an

answer could be used, cutting out the stage of extracting keywords to be used as

answers to questions. To do this we would require training data from a dataset

that contains claims, and useful fact-checking questions surrounding each claim.

This type of question generation is generally seen as a more challenging NLP

task (Do, et al., 2023), which is why it was not used in the final solution.

Different evaluation strategies were used to obtain the recall, precision, and

OFEVER scores for our system, compared to the FEVER baseline and Nie et al.

solution. As such, one future improvement that could be made is to evaluate the

FEVER baseline and the Nie et.al solution using the same 200 claim subset

mentioned in 0. This would likely produce a more accurate comparison.

 76

7 Reflection

I began this task with absolutely no prior knowledge of machine learning or NLP.

This meant that I was completely unaware of how to train a machine learning

model, for NLP or for any other purpose, and I was also unaware of how machine

learning worked in detail, especially in the field of NLP. Additionally, I did not

have a fundamental idea of how any information/evidence retrieval systems

worked. As such, many assumptions made during the development process are

reflective of some naivety.

The development of this project gave me foundational knowledge of exactly

how language models work, as well as an insight into a range of different NLP

tasks such as tokenisation, question answering, named entity recognition, and

dependency parsing. One of the most significant skills I acquired was learning to

train NLP models. This involved not just the technical aspects of setting up and

running training sessions but also the nuances of selecting appropriate data sets,

preprocessing data, choosing the right model architectures, and fine-tuning

parameters to improve model accuracy and efficiency. My understanding of

information retrieval systems was also greatly enhanced. I learned how these

systems work to index, search, and retrieve information from large datasets,

which is crucial for building efficient fact-checking systems that rely on quick

access to accurate data. This project also helped me to improve my report-writing

skills. Having struggled with academic writing in other stages of my degree, I

was forced to practice writing complex technical processes and explaining them

in a clear and concise manner. I also gained valuable experience working with

large datasets, including storing, querying, searching, and manipulating the

FEVER dataset to fit my needs.

When performing this task, I ended up spending a significant amount of time

on testing solutions that didn’t work. This time could have been spent elsewhere

if I had changed some initial assumptions and the overall approach of the project.

Approaching the project, I assumed that it could be done in a “head-first”

manner, meaning that I could start by cycling through many different techniques,

evaluating how well they work to retrieve evidence from the FEVER dataset.

For example, I tried to implement a TF-IDF system in Version 0.1, taking up

 77

almost an entire week when this approach was not useful. Given that I now know

how long it took, I would choose not to consider this approach at all. It turns

out that this process was time-consuming as each system and evaluation script

needed to be implemented to specifically work with my code-base and dataset.

When approaching a project similar to this in the future, I would change the

assumption that this project should be done “head-first” and instead adopt the

assumption that, to undertake this project, a significant amount of research

should be done into different methods as well as their overall effectiveness for

this specific dataset, then one should be chosen and focused on, removing the

need to evaluate different methods internally. This highlights the importance of

doing adequate research in preparation for a task.

In a similar vein, I believe that this project could have achieved better results

if more focus was attributed to fine-tuning one particular method as opposed to

finding the optimal structure of different technique pipelines. The reason why I

decided to structure the project as a concatenation of different techniques was

because I operated under the initial assumption that good information retrieval

systems needed different techniques to retrieve different types of information.

The result of this assumption was many techniques were evaluated sacrificing a

level of deep analysis. The alternative approach, which seems better

retrospectively, would have been to simply focus on one method of retrieval, like

dense passage retrieval, fine tuning this method and reporting the results in a

higher level of detail. I would instead operate under the initial assumption that

a good information retrieval system for this task probably involves a range of

techniques, but mainly relies on one technique that should be focused on, with

the other techniques acting as minor additions to capture niche information. This

emphasises the importance of having a proper project structure identified before

execution.

If I were to redo this project, I would also not have tried to focus so much

on making it perform well on a low-end machine. Due to my lack of experience

in NLP, I assumed that many NLP tasks were, in general, designed to perform

with consumer hardware, with advanced hardware providing quicker execution

time which I didn’t think was needed in this project. However, when working

with such a large amount of data, the hardware of the system made a lot more

 78

difference than I initially thought. As a result, I severely underestimated the

difficulty of creating an information retrieval system for a dataset this large on

low-end hardware. This likely hindered my final solution as many models were

chosen due to their ability to run within reasonable time on low-end hardware

rather than their overall suitability to the task. Additionally, some steps such as

filtering out documents that didn’t contain any extracted keywords may not need

to be applied if the system was not constrained to work on low-end hardware.

The end system did end up having a better execution time, however different

techniques have been entirely filtered out as they were not able to be executed

on the system. In reality it may have been more interesting to pursue these

without the hardware constraint to figure out their potential. In the future I

would remove the assumption that an information retrieval system of this size

should be performed on low-end hardware, so that the best version of the system

could be found, with performance optimisation coming as a later stage in a

separate project.

Approaching this task, I did not consider that the size of the dataset would

affect the project in as significant of a way as it ended up doing. As a result, I

wanted to try and give the evidence retrieval system the ability to search over

as broad of a document corpus as possible. However, this obviously affected

factors such as execution time as we performed keyword searches on every text

in the corpus. As execution time was a factor that contributed to the evaluation

of the performance each version, this influenced other changes made such as the

size of language models used. This means that if we chose a smaller initial

document corpus, we may have ended up with a significantly better performing

system. There are some datasets which focus on specialised topics with a far

smaller document corpus, which retrospectively seem to be a better fit for this

project, given our hardware limitations. An example of this is CLIMATE-

FEVER (Diggelmann , et al., 2021).

All else equal, given the way the task was undertook, I think that my method

of testing and comparing to previous systems as we went was a relatively good

approach. I made the initial assumption that I would be implementing a wide

range of techniques, which may all have different interactions when combined to

make an overall system. Therefore, I decided to test each version as soon as a

 79

major change was made or a new feature was added, giving me the ability to see

if a certain change was worth making.

This project has shown me firsthand the importance of proper planning,

research, and evaluation, as well as giving me invaluable experience due to the

sheer amount of new machine learning and NLP related skills and knowledge

that I have learned in the process.

 80

8 Bibliography

Bernhard, U. & Dohle, M., 2015. Corrective or Confirmative Actions? Political
Online Participation as a Consequence of Presumed Media Influences in
Election Campaigns. [Online]
Available at:
https://www.tandfonline.com/doi/full/10.1080/19331681.2015.1048918
[Accessed 02 02 2024].

BUBER, E. & DIRI, B., 2018. Performance Analysis and CPU vs GPU
Comparison for Deep Learning. 2018 6th International Conference on Control
Engineering & Information Technology (CEIT), pp. 1-6.

Deepset, 2024. Introduction to Haystack 2.0. [Online]
Available at: https://docs.haystack.deepset.ai/docs/intro
[Accessed 02 05 2024].

Del Vicario, M. et al., 2016. The spreading of misinformation online.
Proceedings of the National Academy of Sciences , 04 01, 113(3), pp. 554-559.

Devendra Sachan, D. S. et al., 2023. Questions Are All You Need to Train a
Dense Passage Retriever. Transactions of the Association for Computational
Linguistics, Volume 11, p. 600–616.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K., 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. [Online]
Available at: https://arxiv.org/pdf/1810.04805.pdf
[Accessed 20 03 2024].

Diggelmann , T. et al., 2021. CLIMATE-FEVER: A Dataset for Verification of
Real-World Climate Claims.

Do, X. L. et al., 2023. Modeling What-to-ask and How-to-ask for Answer-
unaware Conversational Question Generation. Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, Volume 1, p. 10785–
10803.

Guo, Z., Schlichtkrull, M. & Vlachos, A., 2022. A Survey on Automated Fact-
Checking. [Online]
Available at: https://arxiv.org/abs/2108.11896
[Accessed 08 03 2024].

Haystack, 2023. https://haystack.deepset.ai/tutorials/09_dpr_training.
[Online]
Available at: https://haystack.deepset.ai/tutorials/09_dpr_training
[Accessed 06 05 2024].

 81

Hugging Face, 2024. Transformers. [Online]
Available at: https://huggingface.co/docs/transformers/en/index
[Accessed 02 05 2024].

Hugging Face, 2024. mistralai/Mistral-7B-v0.1. [Online]
Available at: https://huggingface.co/mistralai/Mistral-7B-v0.1
[Accessed 08 05 2024].

Hugging Face, 2024. Natural Language Processing. [Online]
Available at: https://huggingface.co/learn/nlp-course/en/chapter1/2
[Accessed 11 04 2024].

iarfmoose, 2024. iarfmoose/t5-base-question-generator. [Online]
Available at: https://huggingface.co/iarfmoose/t5-base-question-generator
[Accessed 29 04 2024].

International Organization for Standardization, 2023. Accuracy (trueness and
precision) of measurement methods and results — Part 1: General principles
and definitions. [Online]
Available at: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-2:v1:en
[Accessed 20 03 2024].

Jiang, A. Q. et al., 2023. Mistral 7B.

Karpukhin, V. et al., 2020. Dense Passage Retrieval for Open-Domain
Question Answering. [Online]
Available at: https://scontent-lhr6-2.xx.fbcdn.net/v/t39.8562-
6/240836864_1003700667032628_7482481494695845774_n.pdf?_nc_cat=104&
ccb=1-
7&_nc_sid=e280be&_nc_ohc=4LNOVIKPS90Q7kNvgH4Q3ch&_nc_oc=Adj
EEJnlfOzNM0QcLUqWkCaVnHlzJ4FpLWp7AmPZTXbBMvFdwql1rX1o7pzk
Bwyjv6s&_nc_ht=sco
[Accessed 29 04 2024].

Karpukhin, V. et al., 2020. Dense Passage Retrieval for Open-Domain Question
Answering. 2020 Conference on Empirical Methods in Natural Language
Processing, p. 6769–6781.

Kathare, N., Reddy, V. O. & Prabhu, V., 2021. A Comprehensive Study of
Elasticsearch. [Online]
Available at: https://www.ijsr.net/archive/v10i6/SR21529233126.pdf
[Accessed 30 04 2024].

King, D. R., 1974. The binary vector as the basis of an inverted index file.
Journal of library automation, 7(December 1974), pp. 307-314.

 82

Kwiatkowski, T. et al., 2019. Natural Questions: A Benchmark for Question
Answering Research. Transactions of the Association for Computational
Linguistics, Volume 7, p. 452–466.

Lee, M. L., Hsu, W. & Samarinas, C., 2021. Improving Evidence Retrieval for
Automated Explainable Fact-Checking. North American Chapter of the
Association for Computational Linguistics, Volume Human Language
Technologies: Demonstrations, p. 84–91.

Lek, S. & Park, Y.-S., 2016. Artificial Neural Networks: Multilayer Perceptron
for Ecological Modelling. Developments in Environmental Modelling, Volume
28, pp. 123-140.

Linden, S. v. d., 2022. Misinformation: susceptibility, spread, and. Nature
Medicine, Volume 28, p. 460–467.

Liu, S. et al., 2017. Visual Exploration of Semantic Relationships. IEEE, 24(1),
pp. 553 - 562.

Mathew, S. K. & T, S. M., 2022. The disaster of misinformation: a review of
research in social media. International Journal of Data Science and Analytics,
13(4), p. 271–285.

Mistral AI, 2024. Mistral AI API (0.0.2). [Online]
Available at: https://docs.mistral.ai/api/
[Accessed 08 05 2024].

Mulla, N. & Gharpure, P., 2023. Automatic question generation: a review of
methodologies, datasets, evaluation metrics, and applications. Progress in
Artificial Intelligence, 12(1), pp. 1-32.

Nadeau, D. & Sekine, S., 2007. A survey of named entity recognition and
classification. Lingvisticæ Investigationes, 30(1), pp. 3-26.

Nielsen, J., 1994. 10 Usability Heuristics for User Interface Design. [Online]
Available at: https://www.nngroup.com/articles/ten-usability-heuristics/
[Accessed 02 05 2024].

Nie, Y., Chen, H. & Bansal, M., 2018. Combining Fact Extraction and
Verification with Neural Semantic Matching Networks. [Online]
Available at: https://arxiv.org/pdf/1811.07039.pdf
[Accessed 20 03 2024].

Powers, D. M. W., 2020. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. [Online]
Available at: https://arxiv.org/pdf/2010.16061.pdf
[Accessed 20 03 2024].

 83

Raffel, C. et al., 2023. Exploring the Limits of Transfer Learning with a
Unified. [Online]
Available at: https://arxiv.org/pdf/1910.10683.pdf
[Accessed 11 04 2024].

Rajpurkar, P., Jia, R. & Liang, P., 2018. Know What You Don't Know:
Unanswerable Questions for SQuAD. Volume Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), p. 784–789.

Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P., 2016. SQuAD: 100,000+
Questions for Machine Comprehension of Text. Volume Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, p.
2383–2392.

Sanh, V., Debut, L., Chaumond, J. & Wolf, T., 2020. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper, and lighter. [Online]
Available at: https://arxiv.org/pdf/1910.01108.pdf
[Accessed 20 03 2024].

Schmidt, R. M., 2019. Recurrent Neural Networks (RNNs): A gentle
Introduction and Overview.

Sentence-Transformers, 2024. Pretrained Models. [Online]
Available at: https://www.sbert.net/docs/pretrained_models.html
[Accessed 19 04 2024].

Shvaiko, P., Yatskevich, M. & Giunchiglia, F., 2007. Semantic Matching:
Algorithms and Implementation. Journal on Data Semantics IX, pp. 1-38.

Tedeschi, S. et al., 2021. WikiNEuRal: Combined Neural and Knowledge-based.
[Online]
Available at: https://aclanthology.org/2021.findings-emnlp.215.pdf
[Accessed 01 05 2024].

Thorne, J., Vlachos, A., Christodoulopoulos, C. & Mittal, A., 2018. FEVER: a
large-scale dataset for Fact Extraction and VERification. [Online]
Available at: https://arxiv.org/abs/1803.05355
[Accessed 11 03 2024].

Thorne, J. et al., 2018. The Fact Extraction and VERification (FEVER)
Shared Task. [Online]
Available at: https://arxiv.org/abs/1811.10971
[Accessed 08 03 2024].

Vaswani, A. et al., 2017. Attention Is All You Need. [Online]
Available at: https://arxiv.org/pdf/1706.03762.pdf
[Accessed 20 03 2024].

 84

Wang, L., Qian, L., Zheng, K. & Li, S., 2022. A Survey of Extractive Question
Answering. 2022 International Conference on High Performance Big Data and
Intelligent Systems (HDIS), pp. 147-153.

Webster, J. J. & Kit, C., 1992. Tokenization as the Initial Phase in NLP.
COLING, Volume COLING 1992 Volume 4: The 14th International Conference
on Computational Linguistics.

Wei, J. et al., 2022. Emergent Abilities of Large Language Models.

Zafar, A. et al., 2024. KI-MAG: A knowledge-infused abstractive question
answering system in medical domain. Neurocomputing, Volume 571.

 85

9 Appendices

Appendix A

9.1.1 Version Comparison Table

Comparison table showing the comparative performance of each version of

ESOTERIC. The version number is updated to reflect a major change in

functionality.

Metric V0.1 V1.0 V1.1 V1.2 V1.3 V1.4 V1.5 V1.6 V1.7 Final

Title Match (as % of hits) - 88.64% 61.66% 58.00% 88.46% 89.94% 85.64% 85.64% 80.84% 85.64%

Disambiguation (as % of

hits)

- 5.11% 5.13% 4.46% 4.95% 5.03% 9.57% 9.57% 8.14% 9.57%

Text Match (as % of hits) - 6.25% 33.20% 37.55% 6.59% 5.03% 4.79% 4.79% 11.02% 4.79%

Document Recall - 72.42% 73.25% 75.31% 74.90% 73.66% 77.36% 77.36% 77.36% 77.36%

Document Precision - 7.45% 4.78% 9.18% 9.98% 12.14% 6.24% 6.24% 6.24% 6.24%

Document F1 - 13.51% 8.98% 16.36% 18.61% 20.84% 11.55% 11.55% 11.55% 11.55%

Passage Recall - - - - 69.91% - - 21.33% 47.90% 60.81%

Passage Precision - - - - 59.85% - - 70.07% 60.86% 60.28%

Passage F1 - - - - 64.49% - - 32.70% 53.61% 60.56%

Combined Recall - - - - 78.06% - - 24.01% 59.51% 69.27%

Combined Precision - - - - 14.55% - - 10.08% 5.33% 11.13%

Combined F1 - - - - 25.53% - - 14.20% 9.78% 19.18%

OFEVER Document Score - 74.01% 75.14% 76.84% 77.40% 74.01% 79.66% 79.66% 78.00% 79.66%

OFEVER Passage - - - - 74.52% - - 30.43% 52.27% 59.86%

OFEVER Combined - - - - 55.37% - - 19.77% 31.07% 35.59%

Average Execution Time 381928s 28.30s 39.04s 57.36s 67.36s 18.27s 11.53s 36.51s 36.24s 31.75s

Average Document Set

Length

- 13.60 13.60 13.60 13.60 13.60 13.60 13.60 15.06 13.60

Average Position of

Correct Document (in

textually matched

documents)

- 10.00 7.02 8.50 8.25 5.89 8.72 8.72 7.81 8.72

9.1.2 Version 0.1

Version 0.1 attempted to calculate the TF-IDF matrix of the entire FEVER

dataset beforehand, storing the matrix inside an SQLite3 database. It also tried

 86

to compute the embeddings of the entire FEVER dataset using the paraphrase-

MiniLM-L6-v2 model, storing them inside a large FAISS index. The system

would then calculate the TF-IDF vector of the claim, finding the 𝑁 closest

documents in the TF-IDF matrix using cosine similarity. It would then represent

the claim in a high-dimensional vector format using paraphrase-MiniLM-L6-v2

model, retrieving the 𝑁 closest document vectors. Ultimately this system was

completely rewritten due to the fact that it couldn’t be run on the specifications

listed in 3.1.1, requiring a V100 GPU to initialise. Even when running on the

V100 GPU, a single claim was calculated to take 106 hours to retrieved evidence

for.

9.1.3 Version 1.0

Version 1.0 restructured the entire project to follow a similar structure the Nie

et al. solution. This included their title search and matching method involving

disambiguation information. The system extracted keyword spans using

wikineural-multilingual-ner, attempting to find titles that matched these spans

(including those with “disambiguation” information). To widen the retrieval, we

also searched for 𝑁 documents containing the extracted keyword spans in the

document text. We then calculated the vector embeddings of both the claim and

the textually matched documents using paraphrase-MiniLM-L6-v2, calculating

the 𝑁 most similar documents by using FAISS dot product similarity.

 87

9.1.4 Version 1.1

Version 1.1 was more effective than Version 0.1 however struggled to rank

documents. The semantic similarity between paraphrase-MiniLM-L6-v2

embeddings were not effective at ranking relevant documents, therefore we

devised a ranking method to order documents by how well they answered

questions about the claim. To do this we extracted answer spans using t5-answer-

extraction-small, generating claims around these answers. We then used t5-base-

finetuned-question-generation-ap to generate questions surrounding the claim

and tinyroberta-squad2 to attempt to answer these questions using each

document text, using the confidence score as the final document score. This

achieved better results than simply using semantic similarity as a ranking

method.

9.1.5 Version 1.2

Version 1.2 used FTS5 to search for spans in document texts in the SQLite3

database, greatly improving the execution time.

9.1.6 Version 1.3

Version 1.3 implemented the first passage retriever. We trained a DistilBERT

classification model to classify whether a sentence is relevant (i.e. supports or

refutes) a given claim. We then split each document text into sentences and pass

 88

it into the model alongside the claim, which classifies whether the sentence is

relevant to supporting or refuting the claim.

9.1.7 Version 1.4

Version 1.4 changed database systems from SQLite3 with FTS5 to an

Elasticsearch database. This greatly improved the execution time.

9.1.8 Version 1.5

Version 1.5 replaces the previous system of calculating the document score by

using the confidence score given by tinyroberta-squad2 with a dense passage

retrieval system. To do this all documents in the database needed to be encoded

using dpr-ctx_encoder-single-nq-base and have their embeddings stored in the

Elasticsearch database. The questions were encoded using dpr-question_encoder-

single-nq-base and the retrieved textually matched documents and

disambiguative documents were then ranked according to how similar their

context embeddings were to the set of question embeddings.

9.1.9 Version 1.6

Version 1.6 replaces Version 1.3’s passage retriever with the QA reader

FARMReader equipped with tinyroberta-squad2. This attempted to try and find

which passages answered questions about the claim.

9.1.10 Version 1.7

Version 1.7 added a parallel pipeline to the passage retrieval designed to retrieve

sentences that were semantically similar to the claim. This was done by splitting

each document text into sentences, then calculating the sentences with the

highest BM25 similarity score to the claim.

9.1.11 Final Version

The final version of the system replaces the passage retrieval module in Version

1.7 with the passage retrieval module in 1.3, after finding that the relevancy

classification model in 1.3 was more effective at retrieving passages than 1.7. It

 89

also adds a final step to the passage retrieval process, sorting the passages by

semantic similarity to the claim.

 90

Appendix B

Data flow diagram

 91

Appendix C

Screenshot of Homepage

 92

 93

Appendix D

Screenshot of Loading Page

 94

Appendix E

Screenshot of Results Page

 95

 96

Appendix F

1. Visibility of System Status – The design should always keep users

informed about what is going on, through appropriate feedback within a

reasonable amount of time.

2. Match Between the System and the Real World - The design

should speak the users' language. Use words, phrases, and concepts

familiar to the user, rather than internal jargon. Follow real-world

conventions, making information appear in a natural and logical order.

3. User Control and Freedom - Users often perform actions by mistake.

They need a clearly marked "emergency exit" to leave the unwanted

action without having to go through an extended process.

4. Consistency and Standards - Users should not have to wonder

whether different words, situations, or actions mean the same thing.

Follow platform and industry conventions.

5. Error Prevention - Good error messages are important, but the best

designs carefully prevent problems from occurring in the first place.

Either eliminate error-prone conditions or check for them and present

users with a confirmation option before they commit to the action.

6. Recognition Rather than Recall - Minimize the user's memory load

by making elements, actions, and options visible. The user should not

have to remember information from one part of the interface to another.

Information required to use the design (e.g. field labels or menu items)

should be visible or easily retrievable when needed.

7. Flexibility and Efficiency of Use - Shortcuts — hidden from novice

users — may speed up the interaction for the expert user so that the

design can cater to both inexperienced and experienced users. Allow users

to tailor frequent actions.

8. Aesthetic and Minimalist Design - Interfaces should not contain

information that is irrelevant or rarely needed. Every extra unit of

information in an interface competes with the relevant units of

information and diminishes their relative visibility.

 97

9. Help Users Recognize, Diagnose, and Recover from Errors -

Error messages should be expressed in plain language (no error codes),

precisely indicate the problem, and constructively suggest a solution.

10. Help and Documentation - It’s best if the system doesn’t need any

additional explanation. However, it may be necessary to provide

documentation to help users understand how to complete their tasks.

Appendix G

https://github.com/theobaur13/ESOTERIC

Appendix H

https://github.com/theobaur13/ESOTERIC-website

