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Abstract

Automated fact-checking is a crucial step to combatting the rising issue of
misinformation, particularly online. This report implements an automated
evidence retrieval system, ESOTERIC (Elasticsearch Semantic Optimised Text
Extraction Retrieval from Information Corpus), and deploys this system in a web
application. ESOTERIC is designed to identify evidence documents and passages
from the FEVER dataset which are relevant to a factual claim, whilst operating
on consumer-grade hardware. The system employs a novel approach by aiming
to ask fact-finding questions to verify information from the claim using named
entity recognition, answer-aware question generation, and dense passage retrieval
to identify relevant documents, training a custom classification model to identify
relevant evidence passages. Key findings show that ESOTERIC achieves recall
rates of 77.37% for documents and 60.84% for passages, achieving a notably high
F1 score of 60.56% for the retrieval of passages. Ultimately, this project
contributes to the field by demonstrating the feasibility of using automated

evidence retrieval on consumer-grade hardware within reasonable timeframes.
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1 Introduction

“Natural Language Processing is part of multiple
automated fact-checking systems and related tasks such as
rumour detection. It can be helpful at different steps in the
verification process such as when identifying claims,

retrieving evidence, etc.

In this work, the student will choose the fact verification
sub-task they would like to focus on and study the related
literature. They will then implement an NLP, or an
Information Retrieval (IR) based method for this subtask,

analyse their results and share their insights.”

1.1 DMotivation

Misinformation is a growing issue in society, and whilst it is not new, the
adoption of the internet into people’s daily lives seems to have magnified its
power. It can be described as information which is fake or misleading and is
spread unintentionally. (Mathew & T, 2022). Public internet platforms allow for
the rapid dissemination of misinformative content which can sometimes elicit
harmful social responses (Del Vicario, et al., 2016). One instance of this
phenomenon was recorded by the World Health Organization, which found that
exposure to misinformation about vaccinations led to approximately a 6-
percentage-point reduction in the intention to get vaccinated among those who
initially stated they would “definitely accept a vaccine.” (Linden, 2022). One
proposed method to try and help tackle the issue of misinformation is a corrective
approach, wherein people are provided with a wider range of better-quality fact-
checking facilities (Bernhard & Dohle, 2015).

Fact-checking is the task of assessing whether claims communicated are true.
This process can be time-consuming if done manually, taking professional fact-
checkers a considerable amount of time to parse through hundreds of sources to

determine if a claim is true. Automated fact-checking aims to help speed up this



process. One proposed framework for automated fact-checking can be modelled
as a series of components that can be represented using natural language
processing tasks, which is shown in Figure 1. This pipeline includes three stages:
claim detection, the process of deciding which claims to fact-check; evidence
retrieval, the process of finding sources supporting or refuting the claim; and
claim verification, the assessment of the veracity of the claim based on the

retrieved evidence. (Guo, et al., 2022).
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Figure 1: A natural language processing framework for automated fact checking.

(Guo, et al., 2022)

The evidence retrieval stage is crucial in the fact-checking process as it sets the
foundation for any downstream veracity judgements. The quality of the evidence
retrieved directly affects the veracity reliability and accuracy of the fact-checking
outcome. (Lee, et al., 2021)

We propose ESOTERIC: Elasticsearch Semantic Optimised Text Extraction
Retrieval from Information Corpus, an evidence retrieval system, capable of
retrieving source documents and passages supporting or refuting a given claim,
from within a large corpus of information. This corpus is the pre-existing Fact
Extraction and VERification (FEVER) dataset, covering a broad range of non-
specialised topics, extracted from 5.45 million Wikipedia articles, as to let the
system receive a wide catchment of potential users due to its general
applicability, promoting the general use of automated fact-checking systems.

We intend to make this system accessible and attractive to the general
population by wrapping the retrieval system in a simple user-friendly web
application, allowing internet users immediate access to fact-checking facilities

which in turn aims to curb the growing pertinence of online misinformation.



We aim to design a system that can be run on non-specialised hardware
enhancing its usability across various platforms and devices, including machines
often used by individuals not equipped with high-end computing resources. This
accessibility will democratise the ability to perform accurate fact-checking,
thereby empowering a broader audience to engage in critical analysis and
contribute to the fight against misinformation effectively, addressing the current
lack of evidence-retrieval systems designed to be run on consumer hardware.

The development of a unique evidence-retrieval system is also aimed at
supporting researchers who are looking to create new fact-checking or evidence-
retrieval systems, by adding to the body of academic research into different stages

of the fact-checking framework.

1.2 Problem Definition

The evidence retrieval process aims to retrieve relevant evidence documents and
passages from a corpus of evidence, from a claim given by a user. An example is

provided in Figure 2.

Claim: The world is flat.

Evidence:

[Spherical Earth]

The roughly spherical shape of Earth can be empirically evidenced by

many different types of observation, ranging from ground level, flight

or orbit. The spherical shape causes a number of effects and
phenomena that combined disprove flat Earth beliefs.

Corpus:

[Spherical_Earth]
The roughly spherical shape of Earth can be empirically evidenced by
many different types of observation, ranging from ground level, flight,
or orbit. The spherical shape causes a number of effects and

phenomena that combined disprove flat Earth beliefs.
[Earthworm]

An earthworm is a soil-dwelling terrestrial invertebrate that belongs

to the phylum Annelida. The term is the common name for the largest




members of the class (or subclass, depending on the author)

Oligochaeta.

Figure 2: Example claim, retrieved evidence for claim, and evidence corpus.

Whilst there are many different existing solutions for evidence retrieval systems
on large document corpora, with some specifically designed for the dataset being
used in this paper, there is not much focus on making these evidence retrieval

systems perform on consumer hardware.

2 Background

This section explains key information and concepts relating to different natural
language processing techniques used in the solution, types of language models
used, different retrieval strategies, different data stores, utilised datasets, and

existing works.

2.1 Core Natural Language Processing Techniques

Natural Language Processing (NLP) is a field focused on understanding human
language. It is important to note that NLP tasks aim to understand the meaning
of words individually, but more crucially within the contexts that they are given
in. The NLP field contains a range of subtasks such as Question Answering,

Named Entity Recognition, and language translation. (Hugging Face, 2024)

2.1.1 Question Answering (QA)

Question Answering (QA) is a subtask of NLP that involves the extraction of
answers from a given context to answer a given question. There two main
variants of QA: Extractive QA and Abstractive QA.
Extractive QA — The model extracts an answer passage from a context for
a question (Wang, et al., 2022), both given as inputs as demonstrated in Figure
3:
Question: | What shape is the Earth?



Context: | The roughly spherical shape of Earth can be empirically
evidenced by many different types of observation, ranging from
ground level, flight, or orbit. The spherical shape causes a number
of effects and phenomena that combined disprove flat Earth
beliefs.

Answer: | Spherical

Figure 3: Example inputs and outputs using Extractive Question Answering

Abstractive QA — The model generates free text from a context for a given
question (Zafar, et al., 2024), both given as inputs as demonstrated in Figure 4.

Question: | What shape is the Earth?

Context: | The roughly spherical shape of Earth can be empirically
evidenced by many different types of observation, ranging from
ground level, flight, or orbit. The spherical shape causes a number
of effects and phenomena that combined disprove flat Earth
beliefs.

Answer: The Earth has a spherical shape

Figure 4: Example inputs and outputs using Open Generative Question Answering

The implemented solution primarily makes use of Extractive QA to help score

documents based on how well they answer questions relating to the claim.

2.1.2 Question Generation

Question generation (specifically automated question generation for the scope of
this paper) is a task where questions are generated based on a natural language
paragraph (Mulla & Gharpure, 2023). Question generation systems can be
answer-aware or answer-unaware. Answer-aware systems require a specific
answer and context to be given in order to generate a question. Answer-unaware
question generation systems only require a context to generate a question (Do,

et al., 2023).



2.1.3 Named Entity Recognition (NER)

Named Entity Recognition (NER) is a subtask of NLP that involves the
extraction of named entities in a piece of unstructured text. A named entity
refers to a key subject in a piece of text such as names, companies, locations,
times, or topics that have proper names or noun phrases that act as unique

identifiers (Nadeau & Sekine, 2007). For example, consider the passage:

“Barack Obama (a former president of the United

States) drove a Kia Soul.”
The following named entities can be extracted using NER:

[“Barack Obama”, “United States”, “Kia Soul”]

The implemented solution makes use of NER to pick spans of text out from the

claim to match with document titles or document text.

2.2 Language Models

Different language models are used for different processes. This section aims to
explain how language models work fundamentally, then list the key language

models used in this paper.

2.2.1 Neural Networks

A neural network is a structure comprised of connected nodes called neurons,
connected by edges. A neuron is a single node that takes one or more inputs,
applies weights to these inputs, then performs a computation on these inputs to
produce an output. A neural network consists of a multitude of connected
neurons organised into layers, typically starting with the input layer, into the
intermediary hidden layers, finally into the output layer. Each neuron and edge
are typically assigned a weight value.

An input layer passes data directly into the first hidden layer using a set of
neurons. FEach hidden layer is a set of neurons that receives data from the
previous layer, applying weights and transforming them using non-linear

functions and passing the output onto the next layer. The output layer receives
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data from the final hidden layer and transforms this data to produce a final

result. (Lek & Park, 2016)

Input layer Hidden Output

y Dependent variable(s)
(desired output values)

Independent

variables
y’ Computed

output
values

Computational unit (neuron)

Figure 5: Three-layered feed-forward neural network with one input layer, one (or
more) hidden layer(s), and one output layer: X, independent variables; Y, dependent

variables; and YO0, values computed from the model. (Lek & Park, 2016)

Neural networks provide the basic framework for machine learning models.

2.2.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a type of neural network that contains a
“memory” of previous inputs to influence the current input and output. A
traditional neural network assumes that each set of inputs and outputs are
independent of each other (Schmidt, 2019).

In an NLP context, past text tokens in a passage are often needed as context

for a task. For example, consider the passage:

“My family is German, so I speak a bit of "

When trying to predict the next word in the passage, the context provided by
the earlier part in the sentence is crucial, as the word “German” would strongly
imply that the next word would also be “German”. A non-RNN would struggle
to generate the next word as it does not have a memory of the earlier context in

the passage.



2.2.3 Attention Mechanism

Attention Mechanism is a method employed by neural networks to focus on
specific parts of input data that may be more relevant, therefore require more
focus when producing an output. In the context of NLP this can mean that
certain words or sequences can be given a higher weight, showing their higher
relative importance within a larger word sequence (Vaswani, et al., 2017). Take

the NLP task of translating the following phrase from German to English:

“Kannst du mir helfen diesen Satz zu uebersetzen?”

Translating this sentence word-by-word would result in the following English

translation:

“Can you me help this sentence to translate?”

Using attention mechanisms, higher weights can be applied to words such as
“Kannst” (can) and “helfen” (help), along with the main action “zu uebersetzen"
(to translate), meaning that, when generating a response, the model can more

accurately capture the intention of the sentence as understood in English:

“Can you help me to translate this sentence?”

2.2.4 Tokenisation

Tokenisation is the process of splitting individual pieces of text, which are
normally words or pieces of punctuation, into “tokens”, which are designed to be
readable by a specific language model. This is normally done by first splitting
text into tokens, then mapping these tokens to their specific token ID. These
token IDs can then be read by a language model and converted into a useful

vector representation. (Webster & Kit, 1992)

2.2.5 Transformer Architecture

Transformer Architecture is a deep learning architecture that consists of two

pieces, the encoder and the decoder. The encoder accepts inputs, passing on data



into the decoder. The decoder accepts multiple outputs from the encoder to
generate a prediction (Vaswani, et al., 2017).

Encoder — The encoder transforms embedding IDs from the tokeniser into
vector representations using bi-directional self-attention as well as positional
encoding. This means that for a given text passage, the encoder considers the
entire sentence and weights important words in the sentence using self-attention,
and records the positions of the words using positional encoding. Using these
mechanisms, a numerical vector representation of the sentence can be generated
and passed into the decoder.

Decoder — The decoder’s purpose is to generate an output step-by-step,
considering both the original output received from the encoder to maintain
context, and any previous outputs generated by the decoder to decipher what to
generate next. The decoder also uses self-attention to help weight important
words, however, it masks itself from seeing future tokens like the encoder, making
it uni-directional. It is also autoregressive, meaning that it uses past outputs to
predict future outputs.

The encode-decoder structure can be seen below in Figure 6.

Output
Probabilities

Add & Norm

((Add & Norm J«~

£dd & Norm Multi-Head

Feed Attention
Forward Nx

Nx Add & Norm
Add & Norm aeea

Multi-Head Multi-Head
Attention Attention

A )

. . | e
Positiqnal ) A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 6: The encoder-decoder structure of the Transformer architecture. (Vaswani,

et al., 2017)



Consider the NLP task of generating a textual response for the following

question:
“How are you?”
1. The tokeniser first splits the question into the following tokens:

/{{HO,LU?/; {{a/reﬂj Hyouﬂ {(?77/

)

These tokens are then mapped to token IDs. Using the token IDs the
encoder can then generate vector representations of these words.

2. Using self-attention, weights are applied to each token to indicate the
significance of each token. This is done wusing bi-directional
understanding, meaning that for each token, any past or future tokens
relating to it can be seen.

3. Positional encoding is applied to give the model information about the
word order of the question. This is important as the question can take
on a different meaning if the positions of words are not considered.

Consider the swapping of the following two words:

“How are you?”

“You are how?

4. Using self-attention, the decoder can generate the output sequentially
(token-by-token), considering both the encoder's output and its previous
outputs to produce the next token. This architecture is central to tasks
like translation or text generation, where understanding the context and
sequence is crucial.

The encoder process is used by all language models in this project, and the

decoder process is also used by the T5 model (see 2.2.10).

2.2.6 Vector Embeddings

In NLP, words can be represented as vectors, with words that are closer together
in the vector space being more contextually similar. For example, the word “dog”

and “pet” may be relatively close to each other in the vector space. These vectors
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often have hundreds of dimensions to help better represent relationships between
words such as synonyms, antonyms, and other linguistic patterns. (Liu, et al.,

2017)

2.2.7 Language Models

Language models are machine learning models designed to understand and
generate natural language, as well as perform different NLP tasks. Modern
language models are normally pretrained on a large corpus of text to build an
understanding of language and grammar patterns. Once pretrained, language
models can be fine-tuned to perform a specific NLP task, such as NER, using a
dataset containing samples relating to that specific NLP task. (Devlin, et al.,
2019)

Foundationally, language models rely on a neural network architecture to
process a set of word vector representations into a deeper understanding of text.
A language model can produce a range of outputs such as: predicted next word
tokens, answers to questions, attention weights that indicate how much focus
was given to different input tokens, or contextual vector embeddings to represent
each token within the input sequences context.

Language models make use of RNNs to “remember” previous inputs, helping
to understand context in longer passages of text. Attention mechanism is used
inside the neural network to weight more contextually important words, whilst
using transformer architecture to take input sequences and produce outputs step-
by-step while referring back to the encoder and previous decoder outputs.

Large Language Models (LLMs) are characterised by their size. They are
often pretrained on a far larger text corpus than traditional language models,
using a much larger neural network. This scale allows them to capture a much
broader range of linguistic patterns and contextual nuances. LLMs sometimes
exhibit emergent abilities not explicitly programmed or expected such as
explaining text (Wei, et al., 2022) or in the case of this project, making
judgements if a set of evidence passages supports, refutes, or does not provide

enough evidence for a factual claim.
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2.2.8 Bidirectional Encoder Representations from Transformers

(BERT)

Bidirectional Encoder Representations from Transformers (BERT), is a language
model made by Google in 2018, based on the transformer architecture. BERT
was pre-trained using the Toronto BookCorpus (containing 800 million words),
and English Wikipedia (containing 2.5 billion words) (Devlin, et al., 2019).
BERT is an encoder-only model, meaning it does not contain a decoder. This
means that it can convert word tokens into a vector representation, which can
help solve NLP tasks, but BERT does not have a mechanism to decode these
vector representations back into word tokens. It was regarded as significant due
to its capability to understand both left and right contexts of a word in a
sentence, unlike previous models that primarily focused on one-directional
understanding. BERT set a new standard in the NLP field and as a result, many

different language model variants are adaptations of BERT.

2.2.9 DistilBERT

The DistilBERT model is a smaller variant of the BERT model. The DistilBERT
model is 40% smaller than BERT and is shown to retain 97% of its language
understanding capabilities whilst being 60% faster than BERT. (Sanh, et al.,
2020). The improved speed and smaller size make DistilBERT the most viable
language model for certain use-cases in this project due to the performance
limitations of my personal computer and laptop. DistilBERT is also an encoder-

only model.

2.2.10 T5

The T5 model is an encoder-decoder model, unlike BERT and DistilBERT,
meaning it can receiver word tokens, encode the tokens into vector
representation, and decode the vector representation back into word tokens. T5
is already pre-trained on a multitude of NLP tasks such as translation and
summarisation (Raffel, et al., 2023). The T5 model is naturally suited to tasks

like text generation or answer-aware question generation. The system in this

12



report makes use of the T5 model for extracting key information out of claims,

and generating questions based on this key information.

2.2.11 Mistral

Mistral is a decoder-only large language model which operates at a 187 times
reduced cost compared to GPT-4 models and is capable of outperforming Meta’s
much larger LLaMA 2 70B LLM (Jiang, et al., 2023). It is a generative text model
with 7 billion parameters that demonstrates impressive performance as well as a
relatively low size and cost compared to competitor LLMs. It is open source and
publicly available using either the Hugging Face hub (Hugging Face, 2024) or
Mistral’s dedicated API service (Mistral Al, 2024).

2.2.12 Hugging Face

The Hugging Face platform contains a hub that hosts language models, datasets,
and other NLP-related content. It hosts a wide variety of language models that
have been fine-tuned for specific and niche purposes, which have been uploaded
by users. This project makes use of some of these models. The models can be

accessed using the Transformers library (which is maintained by Hugging Face).

2.2.13 Transformers Library

The Transformers library provides an API that enables users to perform a range
of machine learning tasks such as NLP, computer vision, audio classification, and
multimodal tasks (Hugging Face, 2024). It is used in this project to download
language models from the Hugging Face hub, train and fine-tune language

models, and perform tokenisation.

2.3 Retrieval

This section explains some of the different methods used to retrieve text from a

corpus.
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2.3.1 Lexical Similarity

Lexical Similarity is the measure to which degree two given word sets are similar,
based on the intersection of words. It does not account for the semantic meaning
of the words. Two texts that receive a lexical similarity of 1 suggest that they

have a complete overlap of words. Consider the following passages:

“The cat sat on the mat.”
“The feline rested on the rug.”

“The cat ate on the mat.”

The first passage and the last passage would receive a high lexical similarity score
as they have a high overlap of words, however the first passage and the second
passage would receive a low lexical similarity score as they share less words, of
which are common words. The final system makes use of lexical similarity when
ordering document texts from a database, previous versions of the system

featured lexical similarity more heavily.

2.3.2 Semantic Matching and Semantic Similarity

Semantic Matching is a technique used to detect if two textual passages have a
similar meaning (Shvaiko, et al., 2007). Consider the previous passages in 2.3.1,
the first passage and the second passage will likely return a semantic match due
to their similarity in meaning, even though much of the vocabulary is not shared
between the two passages. Conversely, despite sharing similar vocabulary, the
first and third passage will not return a semantic match as they do not share a
similar meaning. Our solution makes use of semantic matching to rank

documents and select passages that have a similar meaning to the input claim.

2.3.3 BM25

BM25 is a widely used lexical similarity measure. It takes a query and a set of
documents, ranking them based on the relevance the documents have to the
search query. It considers the frequency of each term in the document, how
frequently the term appears in other documents (higher scores are given if the

term is rarer in other documents), the document length, and a number of other
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factors. BM25 score was the primary lexical similarity measurement used in the

final system.

2.3.4 Dense Passage Retrieval (DPR)

Dense Passage Retrieval is a more advanced retrieval technique than BM?25,
classing as a semantic matching technique. It is designed to receive a corpus of
document texts, represented as vector embeddings, and a query, also represented
as vector embeddings. The retriever then uses some sort of similarity metric such
as dot product similarity (a method of measuring the similarity between two
vectors by comparing the angle of two vectors in the vector space), cosine
similarity, or Euclidean distance to determine the closest document vectors to
the query in the vector space (Karpukhin, et al., 2020).

Embeddings are normally encoded using the same model, however, sometimes
a dual-encoder DPR system is used. A dual-encoder system encodes the query
using a special model, specifically designed to convert the query into vector
representation that captures semantically important information in the query,
and encodes the document corpus using a context encoder, which is specifically
designed to capture important semantic information and properties in the corpus.
In a dual-encoder system, both encoders are specialised to allow each encoder to
tailor its parameters to better handle the characteristics of its respective inputs,
such as different lengths or complexities found in queries versus documents
(Devendra Sachan, et al., 2023).

The final system makes use of a Dense Passage Retriever that uses a custom
dual-encoder system specifically designed to encode questions as queries, and

documents as contexts.

2.3.5 Haystack

Haystack is a Python framework created by deepset containing tools designed to
help build applications with large language models and NLP techniques. It
supports models hosted on the Hugging Face hub as well as a number of different
hosting platforms. It also can easily access and format data for NLP tasks that

are stored on a range of different data hosting platforms such as Elasticsearch,
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which was used as data storage for this project. It contains an integrated DPR

tool (Deepset, 2024) which is used in this project.

2.4 Data Storage on Elasticsearch

Elasticsearch is a data storage system and search engine specifically designed to
handle large volumes of data and perform full-text search efficiently on this data.
It is built upon another high-performance full-text search engine library called
Lucene. It makes use of an inverted index to help map words in text back to the
address of their original documents as well as having inbuilt processes to sort
documents by BM25 score. It also contains its own query language that provides
custom text-match searching features. Crucially, Elasticsearch also provides
native support for high-dimensional word embedding vectors, meaning that word
embeddings can be processed before runtime and then accessed at runtime,

cutting out the time-consuming step of encoding passages of text.

2.5 Key Datasets

This section introduces the dataset which we will use for our document corpus
(the FEVER dataset), and two datasets which are used to train models found in

our final solution.

2.5.1 FEVER Dataset

The FEVER dataset is comprised of 184,445 human-generated claims, each claim
is labelled as SUPPORTED, REFUTED, or NOTENOUGHINFO. Each claim
was made by mutating sentences from the introductory sections of Wikipedia
articles, the label reflecting the veracity of the claim, given the set of evidence
sentences from the Wikipedia articles. The portion of the dataset used in this
report follows the structure in shown in Figure 7. The evidence document is a
tuple containing the Annotation ID, Evidence ID, Document ID, and Sentence
ID. The test set follows the same format as the training and development sets;

however, it does not have a label, evidence, or verifiable field.

{
"id": 89891,
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"verifiable": "VERIFIABLE",

"label": "REFUTES",

"claim": "Damon Albarn's debut album was released in
2011.",

"evidence": [

[
[107201, 120581, "Damon Albarn", 17]

}

Figure 7: FEVER training and development set example value.

The FEVER dataset also includes the source documents which the claims are
referring to. These source documents are extracted introductory sections of
Wikipedia articles and contain an ID field (referring to the Wikipedia URL of
the source document), a text field containing the introductory section, and a lines
field which contains the text field with preserved formatting. There are 5,416,537
separate articles split between 109 JSONL documents, each of which follows the

same structure as the example shown in Figure 8.
{

"id": "1928 in association football",

"text": "The following are the football -LRB- soccer RRB-
events of the year 1928 throughout the world . ",
"lines": "0\tThe following are the football -LRB- soccer

-RRB- events of the year 1928 throughout the world .\nl\t"
}

Figure 8: FEVER Wikipedia set example value.

2.5.2 Stanford Question Answering Dataset 1 and 2 (SQuAD)

The SQuAD dataset is a collection of question-answer pairings that were created
by crowd-workers around a set of Wikipedia articles. The SQuAD 1 dataset
contains 100,000 questions with answers within the Wikipedia article set
(Rajpurkar, et al., 2016), and the SQuAD 2 dataset contains 50,000 questions
that were unanswerable within the Wikipedia set (Rajpurkar, et al., 2018).
Specifically, the SQuAD datasets contain answer, question, and context fields.

This dataset is one of the most notable QA datasets and is often used to train
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QG models and QA models. The final system does make use of models that use
the SQuAD dataset.

2.5.3 Natural Questions (NQ)

The NQ dataset is a large-scale QA dataset, like SQuAD, produced by Google.
Its questions are formulated using real Google search queries regarding certain
contexts. It follows a similar structure to the SQuAD dataset. This dataset was
used to train models for a dual-encoder system used in the final solution.

(Kwiatkowski, et al., 2019)

2.6 Existing Works

The Fact Extraction and VERification (FEVER) shared task was proposed in
2018 to raise interest in automated fact verification. It uses the FEVER dataset
and required participants to develop systems to retrieve evidence and predict the
truthfulness of human-generated claims against a set of textual evidence retrieved
from the Wikipedia extracts in the FEVER, dataset.

Due to the nature of being a shared task, it has several pre-existing solutions
developed by researchers and developers. This paper discusses the Nie et al.
(2018) implementation, which was the highest scoring solution to the shared task,
as well as the FEVER baseline solution, which was the original solution proposed
that achieved lower results, acting as a baseline solution to compare other

solutions to (Thorne, et al., 2018).
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3 Methodology

This section states the specification that the system needed to fill, and the
approach used to develop the solution. The section then briefly describes the
overall design of the system, before going into detail about how each part of the
system was implemented, what decisions were made during implementation, and

the justifications for those decisions.

3.1 Specification

The system was designed to take a factual claim from a user to be checked,
retrieving documents that are relevant to either support or refute the claim from
a document corpus. It then needed to retrieve relevant passages that either
supported or refuted the claim, at which point these passages and documents
needed to be presented to the user, sorted by their overall likelihood that they
support or refute the claim.

The second objective of the system was to present this information in a
website in a user-friendly manner, as such it needed to present both the
documents and passages in a clear manner to the user. The following
requirements were set before the undertaking of the project to help:

1. Retrieval of Evidence - The system must efficiently search and
retrieve relevant evidence passages to the user’s claim, retrieved from the
FEVER dataset’s Wikipedia extracts.

2. Retrieval of Documents - The system must efficiently search and
retrieve contextually relevant documents to the user’s query.

3. Retrieval of Passages - The system should identify and extract specific
passages from documents that are contextually relevant to the user's
query.

4. Presentation of Evidence - Retrieved evidence must be presented in
a user-friendly format that clearly highlights the relevance to the query.

5. Performance of System - The system should be able to perform
retrieval within a reasonable time frame for the user, meaning that

queries should not take excessively long, as this could discourage users

19



from engaging with the system. The system should also run on the device

specifications listed below in Section 3.1.1.

3.1.1 Resource Limitations

The task solution was created on a personal computer, therefore any models used
were required to run on this computer. In addition, the solution was designed to
operate in the context of a Flask web-application, therefore it was required to
finish execution within a reasonable time, without extensive resource use. In
practice this resulted in decisions being made to prioritise performance or faster
execution over accuracy. Google Colab was used for small parts of development.

Exact specifications for the computer are listed below:

Type Component
CPU AMD Ryzen 5 4500U 2.38 GHz
GPU None

RAM 8GB DDR4 RAM
Storage 1TB SSD
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3.2 Approach

The project development followed an iterative methodology strategy. Due to the
existence of the FEVER shared task, we had access to previous systems alongside
reporting on the effectiveness of these systems. This meant that we could use

some effective methods from these systems as inspiration for our own.

Methodology

Hypothesise
Decide changes to be

made to improve [
results based on
evaluation
4
Implement Evaluate
Implement the Highlight scope for
changes that were improvement in
decided upon results
A
Assess
Run system and

record evaluation

metrics
A
Design Base
Design a working Implement Base
baseline system »  Create working
based on previous baseline system
working methods

Figure 9: Iterative Methodology Diagram

The process began by reading the analysis reports for the other systems and
choosing methods and techniques that were reported to be effective to design a
baseline system. The design for the baseline system was then implemented. The
purpose of the baseline system was to build a foundation that could be analysed
and improved on iteratively.

The next step in the process was to assess the system based on certain
evaluation metrics. These metrics can change based on the specific system being

assessed but generally tend to be the precision, recall, OFEVER and F1 score of
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both the passage and document retriever (explained in 4.1), alongside individual
metrics for each step of the passage and document retriever.

Based on these metrics, we can evaluate which parts of the system are
ineffective at what they are trying to achieve. For example, the recall of a
document retriever could be brought down by an individual ineffective step in
the function, which will be identified in the assessment (shown previously in
Figure 9).

At this stage parts of the system deemed to need improvement have been
identified, therefore potential changes to these parts can be hypothesised.

Once the changes to the system have been hypothesised, they can be
implemented in a second iteration of the system, at this stage the second iteration
of the system can be assessed, leading to an assess-evaluate-hypothesise-
implement cycle as seen in Figure 9.

This methodology allows for several advantages:

1. The cycle ensured that the system was constantly being refined.

2. The cycle ensured that each part of the system was continuously
being evaluated for effectiveness.

3. It ensured that any changes made to the system were being evaluated
both independently of the system and in the context of the whole
system to see if the changes are effective.

4. The hypothesis-driven approach allowed for evidence-driven
improvements on parts of the system that were identified as being
weak.

5. The creation of a baseline system ensured that there was a control

system to compare different systems to.
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3.3 Design and Implementation

The system has two separate modules: a document retriever, and a passage
retriever. This structure is like that of the FEVER Baseline (Thorne, et al., 2018)
and UNC-NLP systems (Nie, et al., 2018). The document retriever’s function is
to take an input claim from the user and use NLP techniques to retrieve
documents from an Elasticsearch database which contains the document titles,
texts, and vector embeddings of the entire FEVER evidence corpus (consisting
of all 5.45 million Wikipedia pages) that can be used to assess the veracity of the
claim. The passage retriever’s function is to take the original claim and an array
of documents (acquired using the document retriever) and select the passages in
the documents that can be used to assess the veracity of the claim. With the
combination of these two modules, a user can enter a claim into the system and
receive passages that validate the veracity of the claim. The structure can be

seen in Figure 10.
High Level System Architecture
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doc_id
text

embeddings

Evidence J
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Document

L 1

Evidence
dataset

Figure 10: High-Level Data Flow Diagram

Once implemented, the evidence retrieval system was run inside a Flask
application and the dataset was stored in an Elasticsearch database. This means

that users could view a website containing the evidence retrieval system which
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communicates with an external Elasticsearch database. In this project, both the
Elasticsearch database and the Flask application were run locally, however both
can be easily run on dedicated servers. Additionally, a final step was added which
was only present on the web application. The application would take the
retrieved evidence set and claim and use a Mistral large language model to
predict the truthfulness of the claim, giving a justification based on the evidence
available. This was also displayed to the user alongside the evidence passages. A

diagram showing this architecture can be seen below in Figure 11:

Web Application Architecture

Mistral API

Verdict
2 and
E ‘f:tnce justification

€—ridence

Evidence
Retriever

Claim » 1

User T

Document
Set

Elasticsearch
database

Figure 11: Web Application Diagram.

The final evidence retrieval system contains a range of different components in
both the document retriever and the passage retriever. The architecture of both

the document and passage retriever is shown in Appendix B.
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3.3.1 Document Retriever

The structure of the document retriever can be seen below in Figure 12.
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Figure 12: Document Retriever Diagram.

The final document retriever first takes the input claim given by the user. It then
extracts all named entities from the claim using an NER model as well as all
answer spans (slice of words from a text) using an answer-extraction model. For

example, consider the following claim:

Named Entities, Answers
Claim: “Telemundo is an English-language television

network.”

At this point the system runs two parallel pipelines, the Title Matching pipeline,
and the Text Matching pipeline. The Title Matching pipeline takes the
extracted spans from the claims and searches the database for documents that
contain a document title that exactly matches any of the extracted spans (case-
insensitive). It then searches the database for any documents containing titles
that exactly match the extracted spans but have “disambiguation information”

(as detailed in the Nie et al. implementation and below in Figure 13).

Rule: If the claim contains a span of text that is an exact match of a document
title, however the document title contains disambiguation information in
parentheses, the matching will be considered without considering the text in

the parentheses.

Claim: Savages was exclusively a German film.

Retrieved Documents:

[Savages]
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[Savages_(Band) ]
[Savages_(2012_film) ]
Corpus:

[Savages]
[Savages_(Band) ]
[savages (2012 _film)]
[Savages_Film]

[Noble Savages]

Figure 13: Disambiguation information rule, as detailed in the Nie et al.

implementation.

Following this, disambiguative documents are then ranked according to their
semantic similarity with the claim and a cutoff score and document limit is
applied to the disambiguative documents. For example, consider the following

spans:

Spans: [“Telemundo”, “English-language”, “television

network”]

Retrieved Document Titles: [
“Telemundo”, “Telemundo (T'V show)”, “English

Language”, “Television Network”]

Discarded Document Titles: [“Al Rojo Vivo
(Telemundo)”, “English Language GCSE”[

The title-matched documents are then split into a group containing documents
that were retrieved using an exact match, and a group containing documents
that have disambiguated information in the title. The disambiguative documents
are then separated for further ranking using the question generation ranking
whilst the documents retrieved with an exact title match are automatically
assigned a document score of 1 and are passed into the passage retriever.

The Text Matching pipeline is run in parallel to the Title Matching
pipeline. Using the extracted spans the database is then searched for all
documents that contain a word inside the document text that matches any of

the extracted spans. These are automatically ordered by Elasticsearch in order
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of BM25 score. Of these documents the top 1000 are retrieved. These are
concatenated with the disambiguative documents for question generation
ranking.

A separate question generation process also simultaneously takes place at the
same time as the Text Matching and Title Matching pipelines. Using the
extracted spans from the answer extraction model, each extracted span is treated
as an answer to a potential question regarding the claim, whilst the claim itself
is treated as the context of a potential question. Using an extractive question
generation model several potential questions are generated from these answers

and contexts. An example is provided below:

Claim: “Telemundo is an English-language

television network”

Answer Spans: [“Telemundo”, “English-language”,

“television network”|

Generated Questions: [“What is the name of the English-
language television network?”, “What language is

Telemundo?”, “Telemundo is an English-language what?”]

Additionally, each claim also has a manually added polar question to the list of
questions. This is achieved by using a grammatical rule-based approach or, in
difficult cases, the same question generation model is used, but with the answer
set as “No”.

Once the questions have been generated, the document texts of both the
disambiguative documents, and documents obtained using the Text Matching
pipeline are converted alongside their titles using a dense passage retrieval
context encoder model. Each question is then encoded using a dense passage
retrieval question encoder model. The documents are retrieved and assigned a
document score based on the distance in the vector space between their document
texts and each of the generated questions. A cutoff score is applied, and these
documents are then passed into the passage retriever alongside the documents

retrieved by the Title Match pipeline with an exact title match.

27



3.3.2 Passage Retriever

The structure of the passage retriever can be seen below in Figure 14.

Relevancy Top N Passage
—] g - R Paczame
Docoments=» | 1o csification Sentences Ordering i i o
Relevancy Semantic
Clas=ification Similarity

Figure 14: Passage Retrieval Diagram

The passage retriever then splits the document texts into individual sentences.
After this these sentences are put through a fine-tuned language classification
model which was trained to classify whether a sentence was relevant or not to
justify a claim. This model was specifically trained on the FEVER dataset. The
final passage scoring metric is retrieved by calculating the semantic similarity
score between each passage and the claim. Each passage is then sorted by passage

score.

3.3.3 Classes

Three basic classes were created to house evidence (see Figure 15):
e Evidence — Designed to represent entire evidence documents, these can
contain evidence sentences.
e Sentence — Designed to represent individual sentences or passages.
e Evidence Wrapper — Designed to act as an output structure for a

single claim and its retrieved sets of evidence documents and passages.
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Class Diagram

EvidenceWrapper - Evidence = Sentence
claim: String claim: String doc_id: String
evidences: Evidence<> id: String sentence: String

doc_id: Stri score: Float
add_evidences(evidence) - 18
+ doc_score: Float start: Integer
get_evidences()
. o evidence_text: String end: Integer
get_evidences_by_id(id)
. sentences: Sentence<: question: String
get_claim()
. ) embedding: embedding method: String
remove_evidence(id)
doe_retrieval _method: String set_start_end(text)
sort_by_doe_score()
sort_by_sentence_score() set_evidence_sentences(sentences)
seperate_sort() add_sentence(sentence)

merge_overlapping_sentences()

Figure 15: Class Diagram.

An EvidenceWrapper object is initialised when the retrieval starts, it must be
preloaded with a claim. In the process of the evidence retrieval, evidence
documents in the form of Evidence objects are added. The EvidenceWrapper
contains a range of sorting functions and methods to add, remove, and export
different Evidence objects.

The Evidence class represents a single evidence document. It must be
initialised with evidence text. After initialisation, Sentence objects can be added
which represent individual evidence passages. Each Evidence object contains a
document score, representing how relevant the document is to the claim. It also
contains methods to set and add sentences, as well as merge duplicate or
overlapping sentences which are retrieved using separate methods.

The Sentence class can be initialised with a single evidence passage. It also
has an associated passage score, representing how relevant the passage is to the
original claim, as well as the start and end indices of the passage within the
parent document text. It contains a method to set these indices for a given

document text.
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3.3.4 Elasticsearch Document Store

Basic Design

The final system makes use of an Elasticsearch document store to store all 109
JSONL files (containing 5.45 million Wikipedia entries seen in 2.5.1). From the
JSONL files, only the id and text fields were used and loaded into the database.
The remaining lines field only contained the text from the text field, with
added passage breaks and tags, therefore was discarded. The id and text field
were copied directly into a new field doc_id in the Elasticsearch index as these
fields needed to be accessed in both the Title Matching and Text Matching stage
of retrieval. Finally, the text field was also encoded into vector embedding
representations using a DPR context encoder, which would later be used when
using a DPR to re-rank disambiguated and text-matched documents to how well
they match generated questions about the claim. This process can be seen below
in Figure 16.

Elasticsearch Index Loading

JSONL Data = Elasticsearch Index
id » index
text ——Document Text- > text
lines DPR Embedding Document—» embeddings
d D Vectors

Figure 16: Elasticsearch database loading from JSONL files.

Justification
In the Title Matching and Text Matching pipelines both the title field (doc_id)
and text field (content) needed to be parsed for strings using a text search.
Elasticsearch makes use of an inverted index to help quickly search for terms
found in the database (Kathare, et al., 2021), therefore was considered a good
choice for this use-case. An inverted index is a data structure that is used in
databases to point to specific rows that contain certain words. If a database has
a column that contains text, this text can be split into word tokens (tokenised),
then for each word, the IDs of the rows in the database that contain that

particular term are stored alongside that particular term. This means that a
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row’s ID can immediately be accessed when looking up a certain word. (King,
1974)

It also provided full support for storing high-dimensional vector embeddings,
which are required inside this system to help perform dense passage retrieval
without needing to encode the embeddings each time the system is run.

Two different variations of document stores were used, ultimately
Elasticsearch proved to be the most efficient. An older version of the system used
SQLite with an FTS5 virtual table to perform full-text search on the document
title and text fields rather than Elasticsearch. Table 1 shows the performance of
system Version 1.3, containing a locally hosted SQLite3 database with FTS5
compared with system Version 1.4, containing the exact same retrieval process
(only including document retrieval), however with a locally hosted Elasticsearch
database being used instead of an SQLite database. We can see that, when all
else is kept equal, the average execution time for the SQLite3 version is more
than triple that of the Elasticsearch version while bearing similar retrieval

metrics (for more information on how this test data was created, visit 0)

Metric Version 1.3 Version 1.4
(SQLite3 + (Elasticsearch)
FTS5)

Document Recall 74.90% 73.66%

Document Precision 10.00% 12.14%

Document F1 17% 21%

OFEVER Document Score 77.40% 74.01%

Average Execution Time 64.70s 18.27s

Table 1: Performance of system Version 1.3 (SQLite + FTS5) compared to Version
1.4 (Elasticsearch).
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3.3.5 Split Pipelines for Document Retrieval

Savages (2012 film) Savages
"Savages is a 2012 American crime thriller "Savages or The Savages may refer to...”
[film directed by Oliver Stone. It is based on
[the novel of the same name by Don
[Winslow...

T = S - i
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~ "Adore Life is the second studio album by
~ the English post-punk band Savages ,
oy released on 22 January 2016..."

Figure 17: Split Pipeline for Document Retrieval Diagram.

The reason as to why the Title Matching pipeline and Text Matching pipeline
were both included in the document retriever module was to help make use of
computationally inexpensive methods of retrieval.

The implementation made by Nie et al. was able to achieve an 88.86% recall
for their keyword matching system, which the Title Search section of this system
aims to mimic. The stated reason that their solution uses a title matching system
is to reduce the search space to make the task of performing semantic similarity
computationally tractable (Nie, et al., 2018), which is a goal also shared by our
system. One issue with their system is that the keyword matching system for
titles is semantics-agnostic, therefore if an exact match of a keyword is not found
in a document title, then the relevant document cannot be retrieved. We attempt
to somewhat mitigate this issue by creating an extra pipeline that is designed to
slightly widen the search space to include not just documents where the keywords
found in the claim are in the title, but also documents where matching keywords
are found inside the document.

It was discovered in a past implementation of this document retrieval system
that trying to process the vector representations of all 5.45 million document

texts is unfeasible. This past implementation encoded 5 of the 109 JSONL files
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using the model paraphrase-MiniLM-L6-v2, totalling around 150,000
documents, and stored them using a FAISS index. paraphrase-MiniLM-L6-v2
is regarded as a relatively lightweight model with an encoding speed of 19,000
sentences per second on a V100 GPU, whilst achieving a sentence embedding
score of 62.29 and a semantic search score of 39.19 (Sentence-Transformers,
2024). However, with a single claim running on the system specifications listed
in 3.1.1, this system was not able to retrieve a single claim without running out
of memory and crashing the application. After running the system on a Google
Colab instance with a V100 GPU and 50GB RAM it was discovered that a single
claim would take an estimated 106 hours to retrieve (see Figure 18).
[18, 73, 109, 103, 98]

0% | | /194 [@0:00<?, ?it/s]Searching for
Selected 240889 doc_ids

0%| | /2409 [00:00<?, ?it/s]
0% | | 1/2409 [02:41<107:56:11, 161.37s/it]
0% | | 2/2409 [05:18<106:05:28, 158.67s/it]

Figure 18: Screenshot of singular claim running on Google Colab on previous system.

3.3.6 Named Entity Recognition + Answer Extraction

Basic Design
The NER system in this version used Hugging Face’s pipeline function to
automatically load the default version of the WikiNEuRal-multilingual-NER
model from the Hugging Face hub. Additionally, this system also uses an answer
extraction model (t5-small-answer-extraction-en) to extract extra relevant
spans to search for as well as correct for named entities not being correctly
extracted. After this the input claim for the user is passed in and spans from the

claim are returned.

Justification
The implementation made by Nie et al. used a keyword matching system where
they would search for document titles that match spans of text from the claim.

These spans of text were identified by a set of grammatical rules. Instead of
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opting for this approach, where it can be complicated and time-consuming to
create this set of rules as well as specifically tailored towards the FEVER dataset,
a NER system was used to help identify these spans in a more straightforward
approach.

NER was chosen as a suitable method for identifying these spans as the
FEVER dataset is comprised of Wikipedia articles, which are almost all
information regarding a named entity by design. In addition, almost all factual
claims provided in the FEVER dataset contain named entities.

The WikiNEuRal model was initially chosen as it performed NER, and was
specifically fine-tuned on the WikiNEuRal dataset, which was generated from
Wikipedia articles (Tedeschi, et al., 2021). The assumption was made that since
the FEVER dataset contains entirely Wikipedia articles, an NER model trained
on a dataset with a similar structure and content from the same source would be
more suited to the task.

The answer extraction model was also added to the function as it helped
catch additional named entities that were not found using the NER model. It is
a T5 model, trained to extract answers from marked sentences within a given
context on the SQuAD 2 dataset. Whilst it is not specifically trained for NER,
it generally tends to extract more accurate names for named movies and
television show names, as often the WikiNEuRal NER struggles to correctly
identify a television or show name beginning with an article. An example is given
below in Figure 19 and Figure 20 where the correct entity is “The Kerner

Entertainment Company”™
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4 Inference API G

i3 Token Classification Examples

The Kerner Entertainment Company produced The Mighty Ducks.

Compute

Figure 19: Example output of WikiNEuRal-multilingual-NER using claim from
FEVER dataset.

4 Inference API G

5 Text2Text Generation Examples

extract answers: <ha> The Kerner Entertainment Company produced The Mighty
Ducks. <ha>

Compute

Computation time on cpu: 0.102 s

The Mighty Ducks<sep> The Kerner Entertainment Company<sep>

Figure 20: Example output of t5-small-answer-extraction-en using claim from

FEVER dataset.

Several other different models and systems were tested for the extraction of
spans. Namely using spaCy’s en_core_web_sm model alongside its inbuilt entity
extraction module, bert_base_ner, as well as just running WikiNEuRal-
multilingual-NER and tb5-small-answer-extraction-en on their own,

however these all achieved comparatively worse results.
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Implementation
We first initialise the models within an EvidenceRetriever class as attribute
using the Transformers pipeline, automatically downloading the model from the
Hugging Face hub. The output from both the NER and answer extraction model
is then generated and reformatted, then concatenated. After this process
duplicate values are removed, as well as useless values such as “#” if present in

the list. The code can be seen in Figure 21.

self.NER_model = pipeline("token-classification",
model="Babelscape/wikineural-multilingual-ner",
grouped_entities=True)
self.answer_extraction_pipe = pipeline("text2text-
generation"”, model="vabatista/t5-small-answer-extraction-en")
def extract_entities(answer_pipe, NER_pipe, text):

# Extract entities from text through answer pipeline

input = "extract entities: <ha> " + text + " <ha>"

output = answer_pipe(input)

entities = []
answers = output[0][ 'generated text'].split("<sep>")
entities.append(answers)

# Extract entities from text through NER
NER_results = NER_pipe(text)
entities.append(NER_results)

# Remove duplicates
entities = list(set(entities))

return entities

Figure 21: NER model loading and NER function code implementation.

3.3.7 Text Matching Pipeline

Implementation
The text matching search function receives all entity spans detected alongside a
variable document limit (default set to 100, however final versions use a limit of
1000) and an Elasticsearch instance. A new query is created containing a should
clause. A should clause in this scenario returns true if one or more conditions

inside the clause are met, essentially acting as a logical OR. Inside the should

36



clause is a match_phrase condition which simply searches for exact text matches
of a specified phrase, in this case e